import numpy import theano from theano import tensor from blocks import roles from blocks.bricks import application, MLP, Rectifier, Softmax import error from model.mlp import FFMLP, Stream class Model(FFMLP): def __init__(self, config, **kwargs): super(Model, self).__init__(config, **kwargs) self.dest_mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden_dest] + [Softmax()], dims=[config.dim_hidden[-1]] + config.dim_hidden_dest + [config.dim_output_dest], name='dest_mlp') self.time_mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden_time] + [Softmax()], dims=[config.dim_hidden[-1]] + config.dim_hidden_time + [config.dim_output_time], name='time_mlp') self.dest_classes = theano.shared(numpy.array(config.dest_tgtcls, dtype=theano.config.floatX), name='dest_classes') self.time_classes = theano.shared(numpy.array(config.time_tgtcls, dtype=theano.config.floatX), name='time_classes') self.inputs.append('input_time') self.children.extend([self.dest_mlp, self.time_mlp]) def _push_initialization_config(self): super(Model, self)._push_initialization_config() for mlp in [self.dest_mlp, self.time_mlp]: mlp.weights_init = self.config.mlp_weights_init mlp.biases_init = self.config.mlp_biases_init @application(outputs=['destination', 'duration']) def predict(self, **kwargs): hidden = super(Model, self).predict(**kwargs) dest_cls_probas = self.dest_mlp.apply(hidden) dest_outputs = tensor.dot(dest_cls_probas, self.dest_classes) time_cls_probas = self.time_mlp.apply(hidden) time_outputs = kwargs['input_time'] + tensor.dot(time_cls_probas, self.time_classes) self.add_auxiliary_variable(dest_cls_probas, name='destination classes ponderations') self.add_auxiliary_variable(time_cls_probas, name='time classes ponderations') return (dest_outputs, time_outputs) @predict.property('inputs') def predict_inputs(self): return self.inputs @application(outputs=['cost']) def cost(self, **kwargs): (destination_hat, time_hat) = self.predict(**kwargs) destination = tensor.concatenate((kwargs['destination_latitude'][:, None], kwargs['destination_longitude'][:, None]), axis=1) time = kwargs['travel_time'] destination_cost = error.erdist(destination_hat, destination).mean() time_cost = error.rmsle(time_hat.flatten(), time.flatten()) self.add_auxiliary_variable(destination_cost, [roles.COST], 'destination_cost') self.add_auxiliary_variable(time_cost, [roles.COST], 'time_cost') return destination_cost + self.config.time_cost_factor * time_cost @cost.property('inputs') def cost_inputs(self): return self.inputs + ['destination_latitude', 'destination_longitude', 'travel_time']