import numpy import theano from theano import tensor from blocks.bricks import application, Softmax import error from model.mlp import FFMLP, Stream class Model(FFMLP): def __init__(self, config, **kwargs): super(Model, self).__init__(config, output_layer=Softmax, **kwargs) self.classes = theano.shared(numpy.array(config.tgtcls, dtype=theano.config.floatX), name='classes') @application(outputs=['destination']) def predict(self, **kwargs): cls_probas = super(Model, self).predict(**kwargs) return tensor.dot(cls_probas, self.classes) @predict.property('inputs') def predict_inputs(self): return self.inputs @application(outputs=['cost']) def cost(self, **kwargs): y_hat = self.predict(**kwargs) y = tensor.concatenate((kwargs['destination_latitude'][:, None], kwargs['destination_longitude'][:, None]), axis=1) return error.erdist(y_hat, y).mean() @cost.property('inputs') def cost_inputs(self): return self.inputs + ['destination_latitude', 'destination_longitude']