
Taxi Destination Prediction Challenge
Winner Team's Report

Montréal, July 2015

Alex Auvolat Alexandre de Brébisson Étienne Simon
ENS Paris Université de Montréal ENS Cachan
France Québec, Canada France

alexis211@gmail.com adbrebs@gmail.com esimon@esimon.eu

1 Summary
Our model is based on a multi-layer perceptron (MLP). Our MLP model is trained by stochastic
gradient descent (SGD) on the training trajectories. The inputs of our MLP are the 5 �rst and 5
last positions of the known part of the trajectory, as well as embeddings for the context information
(date, client and taxi identi�cation). The embeddings are trained with SGD jointly with the MLP
parameters. The MLP outputs probabilities for 3392 target points, and a mean is calculated to get
a unique destination point as an output. We did no ensembling and did not use any external data.

2 Feature Selection/Extraction
We used a mean-shift algorithm on the destination points of all the training trajectories to extract
3392 classes for the destination point. These classes were used as a �xed softmax layer in the MLP
architecture.

We used the embedding method which is common in neural language modeling approaches (see
[1]) to take the metainformation into account in our model. The following embeddings were used
(listed with corresponding dimensionnality):

Meta-data Embedding Dimension Number of classes
Unique caller number 10 57125
Unique stand number 10 64
Unique taxi number 10 448
Week of year 10 54
Day of week 10 7
1/4 of hour of the day 10 96
Day type (invalid data) 10 3

Table 1. Embeddings and corresponding dimensions used by the model

The embeddings were �rst initialized to random variables and were then let to evolve freely with
SGD along with the other model parameters.

The geographical data input in the network is a centered and normalized version of the GPS data
points.

We did no other preprocessing or feature selection.

3 Modelling Techniques and Training
Here is a brief description of the model we used:

� Input. The input layer of the MLP is the concatenation of the following inputs:

� Five �rst and �ve last points of the known part of the trajectory.

1



� Embeddings for all the metadata.

� Hidden layer. We use a single hidden layer MLP. The hidden layer is of size 500, and the
activation function is a Recti�er Linear Unit (ie f(x)=max (0; x)) [2].

� Output layer. The output layer predicts a probability vector for the 3392 output classes
that we obtained with our clustering preprocessing step. If p is the probability vector output
by our MLP (output by a softmax layer) and ci is the centroid of cluster i, our prediciton
is given by:

ŷ =
X
i

pi ci

Since p sums to one, this is a valid point on the map.

� Cost. We directly train using an approximation (Equirectangular projection) of the mean
Haversine Distance as a cost.

� SGD and optimization. We used a minibatch size of 200. The optimization algorithm is
simple SGD with a �xed learning rate of 0.01 and a momentum of 0.9.

� Validation. To generate our validation set, we tried to create a set that looked like the
training set. For that we generated �cuts� from the training set, i.e. extracted all the taxi
rides that were occuring at given times. The times we selected for our validation set are
similar to those of the test set, only one year before:

1376503200, # 2013-08-14 18:00
1380616200, # 2013-10-01 08:30
1381167900, # 2013-10-07 17:45
1383364800, # 2013-11-02 04:00
1387722600 # 2013-12-22 14:30

Figure 1. Illustration of the winning model.

4 Code Description

Here is a brief description of the Python �les in the archive:

� config/*.py : con�guration �les for the di�erent models we have experimented with

The model which gets the best solution is mlp_tgtcls_1_cswdtx_alexandre.py

2



� data/*.py : �les related to the data pipeline:

� __init__.py contains some general statistics about the data

� csv_to_hdf5.py : convert the CSV data �le into an HDF5 �le usable directly by Fuel

� hdf5.py : utility functions for exploiting the HDF5 �le

� init_valid.py : initializes the HDF5 �le for the validation set

� make_valid_cut.py : generate a validation set using a list of time cuts. Cut lists are
stored in Python �les in data/cuts/ (we used a single cut �le)

� transformers.py : Fuel pipeline for transforming the training dataset into structures
usable by our model

� data_analysis/*.py : scripts for various statistical analyses on the dataset

� cluster_arrival.py : the script used to generate the mean-shift clustering of the
destination points, producing the 3392 target points

� model/*.py : source code for the various models we tried

� __init__.py contains code common to all the models, including the code for embed-
ding the metadata

� mlp.py contains code common to all MLP models

� dest_mlp_tgtcls.py containts code for our MLP destination prediction model using
target points for the output layer

� error.py contains the functions for calculating the error based on the Haversine Distance

� ext_saveload.py contains a Blocks extension for saving and reloading the model parame-
ters so that training can be interrupted

� ext_test.py contains a Blocks extension that runs the model on the test set and produces
an output CSV submission �le

� train.py contains the main code for the training and testing

In the archive we have included only the �les listed above, which are the strict minimum to
reproduce our results. More files for the other models we tried are available on GitHub at
https://github.com/adbrebs/taxi.

5 Dependencies

We used the following packages developped at the MILA lab:

� Theano. A general GPU-accelerated python math library, with an interface similar to
numpy (see [3, 4]). http://deeplearning.net/software/theano/

� Blocks. A deep-learning and neural network framework for Python based on Theano.
https://github.com/mila-udem/blocks

� Fuel. A data pipelining framework for Blocks. https://github.com/mila-udem/fuel

3



We also used the scikit-learn Python library for their mean-shift clustering algorithm. numpy,
cPickle and h5py are also used at various places.

6 How To Generate The Solution

1. Set the TAXI_PATH environment variable to the path of the folder containing the CSV �les.

2. Run data/csv_to_hdf5.py to generate the HDF5 �le (which is generated in TAXI_PATH,
along the CSV �les). This takes around 20 minutes on our machines.

3. Run data/init_valid.py to initialize the validation set HDF5 �le.

4. Run data/make_valid_cut.py test_times_0 to generate the validation set. This can take
a few minutes.

5. Run data_analysis/cluster_arrival.py to generate the arrival point clustering. This
can take a few minutes.

6. Create a folder model_data and a folder output (next to the training script), which will
receive respectively a regular save of the model parameters and many submission �les gen-
erated from the model at a regular interval.

7. Run ./train.py dest_mlp_tgtcls_1_cswdtx_alexandre to train the model. Output
solutions are generated in output/ every 1000 iterations. Interrupt the model with three
consecutive Ctrl+C at any times. The training script is set to stop training after 10 000
000 iterations, but a result �le produced after less than 2 000 000 iterations is already
the winning solution. We trained our model on a GeForce GTX 680 card and it took
about an afternoon to generate the winning solution.

When running the training script, set the following Theano �ags environment variable to
exploit GPU parallelism:

THEANO_FLAGS=floatX=float32,device=gpu,optimizer=FAST_RUN

Theano is only compatible with CUDA, which requires an Nvidia GPU. Training on the
CPU is also possible but much slower.

7 Additional Comments and Observations

The training examples fed to the model are not full trajectories, since that would make no
sense, but prefixes of those trajectories that are generated on-the-fly by a Fuel transformer,
TaxiGenerateSplits, whose code is available in data/transformers.py. The data pipeline is
as follows:

� Select a random full trajectory from the dataset

� Generate a maximum of 100 pre�xes for that trajectory. If the trajectory is smaller than
100 data points, generate all possible pre�xes. Otherwise, chose a random subset of pre�xes.
Keep the �nal destination somewhere as it is used as a target for the training.

� Take only the 5 �rst and 5 last points of the trajectory.

� At this points we have a stream of pre�xes sucessively taken from di�erent trajectories. We
create batches of size 200 with the items of the previous stream, taken in the order in which
they come. The pre�xes generated from a single trajectory may end up in two sucessive
batches, or all in a single batch.

4



8 References

1. Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language
model. The Journal of Machine Learning Research , 3 , 1137-1155.

2. Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse recti�er neural networks. In
International Conference on Arti�cial Intelligence and Statistics (pp. 315-323).

3. Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., ... & Bengio,
Y. (2011). Theano: Deep learning on gpus with python. In NIPS 2011, BigLearning Work-
shop, Granada, Spain .

4. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., ...
& Bengio, Y. (2012). Theano: new features and speed improvements. arXiv preprint
arXiv:1211.5590 .

5


	1 Summary
	2 Feature Selection/Extraction
	3 Modelling Techniques and Training
	4 Code Description
	5 Dependencies
	6 How To Generate The Solution
	7 Additional Comments and Observations
	8 References

