import cPickle import scipy import numpy as np import matplotlib.pyplot as plt import data def compute_number_coordinates(): train_it = data.train_it() # Count the number of coordinates n_coordinates = 0 for ride in train_it: n_coordinates += len(ride[-1]) print n_coordinates return n_coordinates def extract_coordinates(n_coordinates=None): """Extract coordinates from the dataset and store them in a numpy array""" if n_coordinates is None: n_coordinates = compute_number_coordinates() coordinates = np.zeros((n_coordinates, 2), dtype="float32") train_it = data.train_it() c = 0 for ride in train_it: for point in ride[-1]: coordinates[c] = point c += 1 cPickle.dump(coordinates, open(data.DATA_PATH + "/coordinates_array.pkl", "wb")) def draw_map(coordinates, xrg, yrg): print "Start drawing" plt.figure(figsize=(30, 30), dpi=100, facecolor='w', edgecolor='k') hist, xx, yy = np.histogram2d(coordinates[:, 0], coordinates[:, 1], bins=2000, range=[xrg, yrg]) plt.imshow(np.log(hist)) plt.savefig(data.DATA_PATH + "/analysis/xyhmap2.png") if __name__ == "__main__": # extract_coordinates(n_coordinates=83360928) coordinates = cPickle.load(open(data.DATA_PATH + "/coordinates_array.pkl", "rb")) xrg = [-8.75, -8.55] yrg = [41.05, 41.25] draw_map(coordinates, xrg, yrg)