#!/usr/bin/env python # Make a valid dataset by cutting the training set at specified timestamps import os import sys import importlib import h5py import numpy import data from data.hdf5 import taxi_it import sqlite3 def make_valid(outpath): times = [] for i, line in enumerate(taxi_it('train')): time = line['timestamp'] latitude = line['latitude'] if len(latitude) == 0: continue duration = 15 * (len(latitude) - 1) times.append((i, int(time), int(time + duration))) if i % 1000 == 0: print times[-1] with sqlite3.connect(outpath) as timedb: c = timedb.cursor() c.execute(''' CREATE TABLE trip_times (trip INTEGER, begin INTEGER, end INTEGER) ''') print "Adding data..." c.executemany('INSERT INTO trip_times(trip, begin, end) VALUES(?, ?, ?)', times) timedb.commit() print "Creating index..." c.execute('''CREATE INDEX trip_begin_index ON trip_times (begin)''') if __name__ == '__main__': if len(sys.argv) < 1 or len(sys.argv) > 2: print >> sys.stderr, 'Usage: %s [outfile]' % sys.argv[0] sys.exit(1) outpath = os.path.join(data.path, 'time_index.db') if len(sys.argv) < 2 else sys.argv[1] make_valid(outpath)