import os import h5py import numpy path = os.environ.get('TAXI_PATH', '/data/lisatmp3/auvolat/taxikaggle') Polyline = h5py.special_dtype(vlen=numpy.float32) # `wc -l test.csv` - 1 # Minus 1 to ignore the header test_size = 320 # `wc -l train.csv` - 1 train_size = 1710670 # `wc -l metaData_taxistandsID_name_GPSlocation.csv` stands_size = 64 # include 0 ("no origin_stands") # `cut -d, -f 5 train.csv test.csv | sort -u | wc -l` - 1 taxi_id_size = 448 # `cut -d, -f 3 train.csv test.csv | sort -u | wc -l` - 2 origin_call_size = 57125 # include 0 ("no origin_call") # As printed by csv_to_hdf5.py origin_call_train_size = 57106 train_gps_mean = numpy.array([41.1573, -8.61612], dtype=numpy.float32) train_gps_std = numpy.sqrt(numpy.array([0.00549598, 0.00333233], dtype=numpy.float32))