#!/usr/bin/env python import os, h5py, csv, sys, numpy, theano, ast from fuel.datasets.hdf5 import H5PYDataset test_size = 320 # `wc -l test.csv` - 1 # Minus 1 to ignore the header train_size = 1710670 # `wc -l train.csv` - 1 stands_size = 63 # `wc -l metaData_taxistandsID_name_GPSlocation.csv` - 1 taxi_id_size = 448 # `cut -d, -f 5 train.csv test.csv | sort -u | wc -l` - 1 origin_call_size = 57124 # `cut -d, -f 3 train.csv test.csv | sort -u | wc -l` - 3 # Minus 3 to ignore "NA", "" and the header Call_type = h5py.special_dtype(enum=(numpy.int8, {'CENTRAL': 0, 'STAND': 1, 'STREET': 2})) Day_type = h5py.special_dtype(enum=(numpy.int8, {'NORMAL': 0, 'HOLYDAY': 1, 'HOLYDAY_EVE': 2})) Polyline = h5py.special_dtype(vlen=theano.config.floatX) taxi_id_dict = {} origin_call_dict = {0: 0} def get_unique_taxi_id(val): if val in taxi_id_dict: return taxi_id_dict[val] else: taxi_id_dict[val] = len(taxi_id_dict) return len(taxi_id_dict) - 1 def get_unique_origin_call(val): if val in origin_call_dict: return origin_call_dict[val] else: origin_call_dict[val] = len(origin_call_dict) return len(origin_call_dict) - 1 def read_stands(input_directory, h5file): stands_name = h5file.create_dataset('stands_name', shape=(stands_size+1,), dtype=('a', 24)) stands_latitude = h5file.create_dataset('stands_latitude', shape=(stands_size+1,), dtype=theano.config.floatX) stands_longitude = h5file.create_dataset('stands_longitude', shape=(stands_size+1,), dtype=theano.config.floatX) stands_name[0] = 'None' stands_latitude[0] = stands_longitude[0] = 0 with open(os.path.join(input_directory, 'metaData_taxistandsID_name_GPSlocation.csv'), 'r') as f: reader = csv.reader(f) reader.next() # header for line in reader: id = int(line[0]) stands_name[id] = line[1] stands_latitude[id] = float(line[2]) stands_longitude[id] = float(line[3]) return {'stands': {array: (0, stands_size+1) for array in ['stands_name', 'stands_latitude', 'stands_longitude' ]}} def read_taxis(input_directory, h5file, dataset, prefix): print >> sys.stderr, 'read %s: begin' % dataset size=globals()['%s_size'%dataset] trip_id = numpy.empty(shape=(size,), dtype='S19') call_type = numpy.empty(shape=(size,), dtype=Call_type) origin_call = numpy.empty(shape=(size,), dtype=numpy.int32) origin_stand = numpy.empty(shape=(size,), dtype=numpy.int8) taxi_id = numpy.empty(shape=(size,), dtype=numpy.int16) timestamp = numpy.empty(shape=(size,), dtype=numpy.int32) day_type = numpy.empty(shape=(size,), dtype=Day_type) missing_data = numpy.empty(shape=(size,), dtype=numpy.bool) latitude = numpy.empty(shape=(size,), dtype=Polyline) longitude = numpy.empty(shape=(size,), dtype=Polyline) with open(os.path.join(input_directory, '%s.csv'%dataset), 'r') as f: reader = csv.reader(f) reader.next() # header id=0 for line in reader: if id%10000==0 and id!=0: print >> sys.stderr, 'read %s: %d done' % (dataset, id) trip_id[id] = line[0] call_type[id] = ord(line[1][0]) - ord('A') origin_call[id] = 0 if line[2]=='NA' or line[2]=='' else get_unique_origin_call(int(line[2])) origin_stand[id] = 0 if line[3]=='NA' or line[3]=='' else int(line[3]) taxi_id[id] = get_unique_taxi_id(int(line[4])) timestamp[id] = int(line[5]) day_type[id] = ord(line[6][0]) - ord('A') missing_data[id] = line[7][0] == 'T' polyline = ast.literal_eval(line[8]) latitude[id] = numpy.array([point[1] for point in polyline], dtype=theano.config.floatX) longitude[id] = numpy.array([point[0] for point in polyline], dtype=theano.config.floatX) id+=1 splits = {} print >> sys.stderr, 'read %s: writing' % dataset for array in ['trip_id', 'call_type', 'origin_call', 'origin_stand', 'taxi_id', 'timestamp', 'day_type', 'missing_data', 'latitude', 'longitude']: name = '%s%s' % (prefix, array) h5file.create_dataset(name, data=locals()[array]) splits[name] = (0, size) print >> sys.stderr, 'read %s: end' % dataset return {dataset: splits} def unique(h5file): unique_taxi_id = h5file.create_dataset('unique_taxi_id', shape=(taxi_id_size,), dtype=numpy.int32) assert len(taxi_id_dict) == taxi_id_size for k, v in taxi_id_dict.items(): unique_taxi_id[v] = k unique_origin_call = h5file.create_dataset('unique_origin_call', shape=(origin_call_size+1,), dtype=numpy.int32) assert len(origin_call_dict) == origin_call_size+1 for k, v in origin_call_dict.items(): unique_origin_call[v] = k return {'unique': {'unique_taxi_id': (0, taxi_id_size), 'unique_origin_call': (0, origin_call_size+1)}} def convert(input_directory, save_path): h5file = h5py.File(save_path, 'w') split = {} split.update(read_stands(input_directory, h5file)) split.update(read_taxis(input_directory, h5file, 'train', '')) print 'First origin_call not present in training set: ', len(origin_call_dict) split.update(read_taxis(input_directory, h5file, 'test', 'test_')) split.update(unique(h5file)) h5file.attrs['split'] = H5PYDataset.create_split_array(split) h5file.flush() h5file.close() if __name__ == '__main__': if len(sys.argv) != 3: print >> sys.stderr, 'Usage: %s download_dir output_file' % sys.argv[0] sys.exit(1) convert(sys.argv[1], sys.argv[2])