from blocks.initialization import IsotropicGaussian, Constant import data from model.time_mlp_tgtcls import Model, Stream n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory # generate target classes as a Fibonacci sequence tgtcls = [1, 2] for i in range(22): tgtcls.append(tgtcls[-1] + tgtcls[-2]) dim_embeddings = [ ('origin_call', data.origin_call_size, 10), ('origin_stand', data.stands_size, 10), ('week_of_year', 52, 10), ('day_of_week', 7, 10), ('qhour_of_day', 24 * 4, 10), ('day_type', 3, 10), ('taxi_id', 448, 10), ] dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) dim_hidden = [500, 100] dim_output = len(tgtcls) embed_weights_init = IsotropicGaussian(0.001) mlp_weights_init = IsotropicGaussian(0.01) mlp_biases_init = Constant(0.001) learning_rate = 0.0001 momentum = 0.99 batch_size = 32 max_splits = 100