from blocks.initialization import IsotropicGaussian, Constant from blocks.algorithms import Momentum from blocks.bricks import Tanh import data from model.memory_network_mlp import Model, Stream n_begin_end_pts = 5 dim_embeddings = [ ('origin_call', data.origin_call_train_size, 10), ('origin_stand', data.stands_size, 10), ('week_of_year', 52, 10), ('day_of_week', 7, 10), ('qhour_of_day', 24 * 4, 10), ('day_type', 3, 10), ] embed_weights_init = IsotropicGaussian(0.001) class MLPConfig(object): __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init', 'embed_weights_init', 'dim_embeddings') prefix_encoder = MLPConfig() prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) prefix_encoder.dim_hidden = [500] prefix_encoder.weights_init = IsotropicGaussian(0.01) prefix_encoder.biases_init = Constant(0.001) prefix_encoder.embed_weights_init = embed_weights_init prefix_encoder.dim_embeddings = dim_embeddings candidate_encoder = MLPConfig() candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) candidate_encoder.dim_hidden = [500] candidate_encoder.weights_init = IsotropicGaussian(0.01) candidate_encoder.biases_init = Constant(0.001) candidate_encoder.embed_weights_init = embed_weights_init candidate_encoder.dim_embeddings = dim_embeddings representation_size = 500 representation_activation = Tanh normalize_representation = False step_rule = Momentum(learning_rate=0.1, momentum=0.9) batch_size = 10000 # batch_sort_size = 20 # monitor_freq = 2 max_splits = 200 train_candidate_size = 20000 valid_candidate_size = 20000 test_candidate_size = 20000