from blocks.initialization import IsotropicGaussian, Constant from blocks.algorithms import Momentum from blocks.bricks import Tanh import data from model.memory_network_bidir import Model, Stream dim_embeddings = [ ('origin_call', data.origin_call_train_size, 10), ('origin_stand', data.stands_size, 10), ('week_of_year', 52, 10), ('day_of_week', 7, 10), ('qhour_of_day', 24 * 4, 10), ('day_type', 3, 10), ] embed_weights_init = IsotropicGaussian(0.001) class RNNConfig(object): __slots__ = ('rec_state_dim', 'dim_embeddings', 'embed_weights_init', 'dim_hidden', 'weights_init', 'biases_init') prefix_encoder = RNNConfig() prefix_encoder.dim_embeddings = dim_embeddings prefix_encoder.embed_weights_init = embed_weights_init prefix_encoder.rec_state_dim = 100 prefix_encoder.dim_hidden = [100, 100] prefix_encoder.weights_init = IsotropicGaussian(0.01) prefix_encoder.biases_init = Constant(0.001) candidate_encoder = RNNConfig() candidate_encoder.dim_embeddings = dim_embeddings candidate_encoder.embed_weights_init = embed_weights_init candidate_encoder.rec_state_dim = 100 candidate_encoder.dim_hidden = [100, 100] candidate_encoder.weights_init = IsotropicGaussian(0.01) candidate_encoder.biases_init = Constant(0.001) representation_size = 100 representation_activation = Tanh normalize_representation = True batch_size = 32 batch_sort_size = 20 max_splits = 100 num_cuts = 1000 train_candidate_size = 300 valid_candidate_size = 300 test_candidate_size = 300 step_rule = Momentum(learning_rate=0.01, momentum=0.9)