from blocks import roles from blocks.bricks import Rectifier, Tanh, Logistic from blocks.filter import VariableFilter from blocks.initialization import IsotropicGaussian, Constant import data from model.memory_network import Model, Stream n_begin_end_pts = 10 # how many points we consider at the beginning and end of the known trajectory dim_embeddings = [ ('origin_call', data.origin_call_train_size, 10), ('origin_stand', data.stands_size, 10), ('week_of_year', 52, 10), ('day_of_week', 7, 10), ('qhour_of_day', 24 * 4, 10), ('day_type', 3, 10), ] class MLPConfig(object): __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init') prefix_encoder = MLPConfig() prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) prefix_encoder.dim_hidden = [1000, 1000] prefix_encoder.weights_init = IsotropicGaussian(0.01) prefix_encoder.biases_init = Constant(0.001) candidate_encoder = MLPConfig() candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) candidate_encoder.dim_hidden = [1000, 1000] candidate_encoder.weights_init = IsotropicGaussian(0.01) candidate_encoder.biases_init = Constant(0.001) representation_size = 1000 representation_activation = Tanh normalize_representation = True embed_weights_init = IsotropicGaussian(0.001) dropout = 0.5 dropout_inputs = VariableFilter(bricks=[Rectifier], name='output') noise = 0.01 noise_inputs = VariableFilter(roles=[roles.PARAMETER]) batch_size = 512 max_splits = 1 num_cuts = 1000 train_candidate_size = 10000 valid_candidate_size = 20000