import os import cPickle from blocks.algorithms import Momentum from blocks.initialization import IsotropicGaussian, Constant import data from model.bidirectional_tgtcls import Model, Stream with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f: tgtcls = cPickle.load(f) dim_embeddings = [ ('origin_call', data.origin_call_train_size, 10), ('origin_stand', data.stands_size, 10), ('week_of_year', 52, 10), ('day_of_week', 7, 10), ('qhour_of_day', 24 * 4, 10), ('taxi_id', data.taxi_id_size, 10), ] hidden_state_dim = 100 dim_hidden = [500, 500] embed_weights_init = IsotropicGaussian(0.01) weights_init = IsotropicGaussian(0.1) biases_init = Constant(0.01) batch_size = 400 batch_sort_size = 20 max_splits = 100 train_max_len = 500 window_size = 5 # monitor_freq = 10000 # temporary, for finding good learning rate step_rule= Momentum(learning_rate=0.001, momentum=0.9)