From 6d946f29f7548c75e97f30c4356dbac200ee6cce Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=C3=89tienne=20Simon?= Date: Mon, 18 May 2015 16:22:00 -0400 Subject: Refactor models, clean the code and separate training from testing. --- ...oint_simple_mlp_tgtcls_111_cswdtx_noise_dout.py | 62 ++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 config/joint_simple_mlp_tgtcls_111_cswdtx_noise_dout.py (limited to 'config/joint_simple_mlp_tgtcls_111_cswdtx_noise_dout.py') diff --git a/config/joint_simple_mlp_tgtcls_111_cswdtx_noise_dout.py b/config/joint_simple_mlp_tgtcls_111_cswdtx_noise_dout.py new file mode 100644 index 0000000..1faea15 --- /dev/null +++ b/config/joint_simple_mlp_tgtcls_111_cswdtx_noise_dout.py @@ -0,0 +1,62 @@ +import cPickle + +from blocks import roles +from blocks.bricks import Rectifier +from blocks.filter import VariableFilter +from blocks.initialization import IsotropicGaussian, Constant + +import data +from model.joint_simple_mlp_tgtcls import Model, Stream + + +n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 5 + +n_valid = 1000 + +with open("%s/arrival-clusters.pkl" % data.path) as f: + dest_tgtcls = cPickle.load(f) + +# generate target classes for time prediction as a Fibonacci sequence +time_tgtcls = [1, 2] +for i in range(22): + time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2]) + +dim_embeddings = [ + ('origin_call', data.origin_call_size+1, 10), + ('origin_stand', data.stands_size+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +# Common network part +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [500] + +# Destination prediction part +dim_hidden_dest = [100] +dim_output_dest = len(dest_tgtcls) + +# Time prediction part +dim_hidden_time = [100] +dim_output_time = len(time_tgtcls) + +# Cost ratio between distance cost and time cost +time_cost_factor = 4 + +embed_weights_init = IsotropicGaussian(0.001) +mlp_weights_init = IsotropicGaussian(0.01) +mlp_biases_init = Constant(0.001) + +batch_size = 200 + +dropout = 0.5 +dropout_inputs = VariableFilter(bricks=[Rectifier], name='output') + +noise = 0.01 +noise_inputs = VariableFilter(roles=[roles.PARAMETER]) + +valid_set = 'cuts/test_times_0' -- cgit v1.2.3