aboutsummaryrefslogtreecommitdiff
path: root/model/joint_simple_mlp_tgtcls.py
diff options
context:
space:
mode:
Diffstat (limited to 'model/joint_simple_mlp_tgtcls.py')
-rw-r--r--model/joint_simple_mlp_tgtcls.py148
1 files changed, 55 insertions, 93 deletions
diff --git a/model/joint_simple_mlp_tgtcls.py b/model/joint_simple_mlp_tgtcls.py
index 834afbf..d6d4e49 100644
--- a/model/joint_simple_mlp_tgtcls.py
+++ b/model/joint_simple_mlp_tgtcls.py
@@ -1,109 +1,71 @@
-from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity, Softmax
-from blocks.bricks.lookup import LookupTable
-
-from blocks.filter import VariableFilter
-from blocks.graph import ComputationGraph, apply_dropout
-
import numpy
import theano
from theano import tensor
+from blocks import roles
+from blocks.bricks import application, MLP, Rectifier, Softmax
-import data
import error
+from model.mlp import FFMLP, Stream
-class Model(object):
- def __init__(self, config):
- # The input and the targets
- x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
- x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
- x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
- x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
+class Model(FFMLP):
+ def __init__(self, config, **kwargs):
+ super(Model, self).__init__(config, **kwargs)
+
+ self.dest_mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden_dest] + [Softmax()],
+ dims=[config.dim_hidden[-1]] + config.dim_hidden_dest + [config.dim_output_dest],
+ name='dest_mlp')
+ self.time_mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden_time] + [Softmax()],
+ dims=[config.dim_hidden[-1]] + config.dim_hidden_time + [config.dim_output_time],
+ name='time_mlp')
- x_input_time = tensor.lvector('input_time')
+ self.dest_classes = theano.shared(numpy.array(config.dest_tgtcls, dtype=theano.config.floatX), name='dest_classes')
+ self.time_classes = theano.shared(numpy.array(config.time_tgtcls, dtype=theano.config.floatX), name='time_classes')
- input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude]
- embed_tables = []
+ self.inputs.append('input_time')
+ self.children.extend([self.dest_mlp, self.time_mlp])
- self.require_inputs = ['first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude', 'input_time']
+ def _push_initialization_config(self):
+ super(Model, self)._push_initialization_config()
+ for mlp in [self.dest_mlp, self.time_mlp]:
+ mlp.weights_init = self.config.mlp_weights_init
+ mlp.biases_init = self.config.mlp_biases_init
- for (varname, num, dim) in config.dim_embeddings:
- self.require_inputs.append(varname)
- vardata = tensor.lvector(varname)
- tbl = LookupTable(length=num, dim=dim, name='%s_lookup'%varname)
- embed_tables.append(tbl)
- input_list.append(tbl.apply(vardata))
+ @application(outputs=['destination', 'duration'])
+ def predict(self, **kwargs):
+ hidden = super(Model, self).predict(**kwargs)
- y_dest = tensor.concatenate((tensor.vector('destination_latitude')[:, None],
- tensor.vector('destination_longitude')[:, None]), axis=1)
- y_time = tensor.lvector('travel_time')
+ dest_cls_probas = self.dest_mlp.apply(hidden)
+ dest_outputs = tensor.dot(dest_cls_probas, self.dest_classes)
- # Define the model
- common_mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden],
- dims=[config.dim_input] + config.dim_hidden)
+ time_cls_probas = self.time_mlp.apply(hidden)
+ time_outputs = kwargs['input_time'] + tensor.dot(time_cls_probas, self.time_classes)
- dest_mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden_dest] + [Softmax()],
- dims=[config.dim_hidden[-1]] + config.dim_hidden_dest + [config.dim_output_dest],
- name='dest_mlp')
- dest_classes = theano.shared(numpy.array(config.dest_tgtcls, dtype=theano.config.floatX), name='dest_classes')
+ self.add_auxiliary_variable(dest_cls_probas, name='destination classes ponderations')
+ self.add_auxiliary_variable(time_cls_probas, name='time classes ponderations')
- time_mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden_time] + [Softmax()],
- dims=[config.dim_hidden[-1]] + config.dim_hidden_time + [config.dim_output_time],
- name='time_mlp')
- time_classes = theano.shared(numpy.array(config.time_tgtcls, dtype=theano.config.floatX), name='time_classes')
-
- # Create the Theano variables
- inputs = tensor.concatenate(input_list, axis=1)
- # inputs = theano.printing.Print("inputs")(inputs)
- hidden = common_mlp.apply(inputs)
-
- dest_cls_probas = dest_mlp.apply(hidden)
- dest_outputs = tensor.dot(dest_cls_probas, dest_classes)
- dest_outputs.name = 'dest_outputs'
-
- time_cls_probas = time_mlp.apply(hidden)
- time_outputs = tensor.dot(time_cls_probas, time_classes) + x_input_time
- time_outputs.name = 'time_outputs'
-
- # Calculate the cost
- dest_cost = error.erdist(dest_outputs, y_dest).mean()
- dest_cost.name = 'dest_cost'
- dest_hcost = error.hdist(dest_outputs, y_dest).mean()
- dest_hcost.name = 'dest_hcost'
-
- time_cost = error.rmsle(time_outputs.flatten(), y_time.flatten())
- time_cost.name = 'time_cost'
- time_scost = config.time_cost_factor * time_cost
- time_scost.name = 'time_scost'
-
- cost = dest_cost + time_scost
-
- if hasattr(config, 'dropout_p'):
- cg = ComputationGraph(cost)
- dropout_inputs = VariableFilter(
- bricks=[b for b in list(common_mlp.children) +
- list(dest_mlp.children) +
- list(time_mlp.children)
- if isinstance(b, Rectifier)],
- name='output')(cg)
- cg = apply_dropout(cg, dropout_inputs, config.dropout_p)
- cost = cg.outputs[0]
-
- cost.name = 'cost'
-
- # Initialization
- for tbl in embed_tables:
- tbl.weights_init = config.embed_weights_init
- tbl.initialize()
-
- for mlp in [common_mlp, dest_mlp, time_mlp]:
- mlp.weights_init = config.mlp_weights_init
- mlp.biases_init = config.mlp_biases_init
- mlp.initialize()
-
- self.cost = cost
- self.monitor = [cost, dest_cost, dest_hcost, time_cost, time_scost]
- self.outputs = tensor.concatenate([dest_outputs, time_outputs[:, None]], axis=1)
- self.outputs.name = 'outputs'
- self.pred_vars = ['destination_longitude', 'destination_latitude', 'travel_time']
+ return (dest_outputs, time_outputs)
+
+ @predict.property('inputs')
+ def predict_inputs(self):
+ return self.inputs
+
+ @application(outputs=['cost'])
+ def cost(self, **kwargs):
+ (destination_hat, time_hat) = self.predict(**kwargs)
+
+ destination = tensor.concatenate((kwargs['destination_latitude'][:, None],
+ kwargs['destination_longitude'][:, None]), axis=1)
+ time = kwargs['travel_time']
+
+ destination_cost = error.erdist(destination_hat, destination).mean()
+ time_cost = error.rmsle(time_hat.flatten(), time.flatten())
+
+ self.add_auxiliary_variable(destination_cost, [roles.COST], 'destination_cost')
+ self.add_auxiliary_variable(time_cost, [roles.COST], 'time_cost')
+
+ return destination_cost + self.config.time_cost_factor * time_cost
+ @cost.property('inputs')
+ def cost_inputs(self):
+ return self.inputs + ['destination_latitude', 'destination_longitude', 'travel_time']