aboutsummaryrefslogtreecommitdiff
path: root/config
diff options
context:
space:
mode:
Diffstat (limited to 'config')
-rw-r--r--config/rnn_1.py2
-rw-r--r--config/rnn_lag_tgtcls_1.py49
-rw-r--r--config/rnn_tgtcls_1.py37
3 files changed, 87 insertions, 1 deletions
diff --git a/config/rnn_1.py b/config/rnn_1.py
index 5bc62d8..6e148c4 100644
--- a/config/rnn_1.py
+++ b/config/rnn_1.py
@@ -1,7 +1,7 @@
from blocks.initialization import IsotropicGaussian, Constant
import data
-from model.rnn import Model, Stream
+from model.rnn_direct import Model, Stream
class EmbedderConfig(object):
__slots__ = ('dim_embeddings', 'embed_weights_init')
diff --git a/config/rnn_lag_tgtcls_1.py b/config/rnn_lag_tgtcls_1.py
new file mode 100644
index 0000000..7a41b70
--- /dev/null
+++ b/config/rnn_lag_tgtcls_1.py
@@ -0,0 +1,49 @@
+import os
+import cPickle
+
+from blocks import roles
+from blocks.bricks import Rectifier
+from blocks.filter import VariableFilter
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+from model.rnn_lag_tgtcls import Model, Stream
+
+class EmbedderConfig(object):
+ __slots__ = ('dim_embeddings', 'embed_weights_init')
+
+pre_embedder = EmbedderConfig()
+pre_embedder.embed_weights_init = IsotropicGaussian(0.001)
+pre_embedder.dim_embeddings = [
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('day_type', 3, 10),
+ ('taxi_id', 448, 10),
+]
+
+post_embedder = EmbedderConfig()
+post_embedder.embed_weights_init = IsotropicGaussian(0.001)
+post_embedder.dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+]
+
+with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f: tgtcls = cPickle.load(f)
+
+hidden_state_dim = 100
+weights_init = IsotropicGaussian(0.01)
+biases_init = Constant(0.001)
+
+rec_to_out_dims = [200, 1000]
+in_to_rec_dims = [200]
+
+dropout = 0.5
+dropout_inputs = VariableFilter(bricks=[Rectifier], name='output')
+
+noise = 0.01
+noise_inputs = VariableFilter(roles=[roles.PARAMETER])
+
+batch_size = 10
+batch_sort_size = 10
+valid_set = 'cuts/test_times_0'
diff --git a/config/rnn_tgtcls_1.py b/config/rnn_tgtcls_1.py
new file mode 100644
index 0000000..3204559
--- /dev/null
+++ b/config/rnn_tgtcls_1.py
@@ -0,0 +1,37 @@
+import os
+import cPickle
+
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+from model.rnn_tgtcls import Model, Stream
+
+class EmbedderConfig(object):
+ __slots__ = ('dim_embeddings', 'embed_weights_init')
+
+pre_embedder = EmbedderConfig()
+pre_embedder.embed_weights_init = IsotropicGaussian(0.001)
+pre_embedder.dim_embeddings = [
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('day_type', 3, 10),
+ ('taxi_id', 448, 10),
+]
+
+post_embedder = EmbedderConfig()
+post_embedder.embed_weights_init = IsotropicGaussian(0.001)
+post_embedder.dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+]
+
+with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f: tgtcls = cPickle.load(f)
+
+hidden_state_dim = 100
+weights_init = IsotropicGaussian(0.01)
+biases_init = Constant(0.001)
+
+batch_size = 10
+batch_sort_size = 10
+valid_set = 'cuts/test_times_0'