diff options
Diffstat (limited to 'config/memory_network_1.py')
-rw-r--r-- | config/memory_network_1.py | 44 |
1 files changed, 0 insertions, 44 deletions
diff --git a/config/memory_network_1.py b/config/memory_network_1.py deleted file mode 100644 index 70b0f3e..0000000 --- a/config/memory_network_1.py +++ /dev/null @@ -1,44 +0,0 @@ -from blocks.initialization import IsotropicGaussian, Constant - -import data -from model.memory_network import Model, Stream - - -n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory - -dim_embeddings = [ - ('origin_call', data.origin_call_train_size, 10), - ('origin_stand', data.stands_size, 10), - ('week_of_year', 52, 10), - ('day_of_week', 7, 10), - ('qhour_of_day', 24 * 4, 10), - ('day_type', 3, 10), -] - - -class MLPConfig(object): - __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init') - -prefix_encoder = MLPConfig() -prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -prefix_encoder.dim_hidden = [100, 100, 100] -prefix_encoder.weights_init = IsotropicGaussian(0.01) -prefix_encoder.biases_init = Constant(0.001) - -candidate_encoder = MLPConfig() -candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) -candidate_encoder.dim_hidden = [100, 100, 100] -candidate_encoder.weights_init = IsotropicGaussian(0.01) -candidate_encoder.biases_init = Constant(0.001) - -normalize_representation = True - -embed_weights_init = IsotropicGaussian(0.001) - -batch_size = 32 - -max_splits = 1 -num_cuts = 1000 - -train_candidate_size = 1000 -valid_candidate_size = 10000 |