aboutsummaryrefslogtreecommitdiff
path: root/config/dest_simple_mlp_emb_only.py
diff options
context:
space:
mode:
Diffstat (limited to 'config/dest_simple_mlp_emb_only.py')
-rw-r--r--config/dest_simple_mlp_emb_only.py22
1 files changed, 11 insertions, 11 deletions
diff --git a/config/dest_simple_mlp_emb_only.py b/config/dest_simple_mlp_emb_only.py
index e5c91b8..76acdfa 100644
--- a/config/dest_simple_mlp_emb_only.py
+++ b/config/dest_simple_mlp_emb_only.py
@@ -6,26 +6,26 @@ from model.mlp_emb import Model, Stream
use_cuts_for_training = True
dim_embeddings = [
- ('origin_call', data.origin_call_train_size, 10),
- ('origin_stand', data.stands_size, 10),
- ('week_of_year', 52, 10),
- ('day_of_week', 7, 10),
+ # ('origin_call', data.origin_call_train_size, 100),
+ # ('origin_stand', data.stands_size, 100),
+ # ('week_of_year', 52, 100),
+ # ('day_of_week', 7, 100),
('qhour_of_day', 24 * 4, 10),
- ('day_type', 3, 10),
+ ('day_type', 3, 1),
]
dim_input = sum(x for (_, _, x) in dim_embeddings)
-dim_hidden = [200, 100]
+dim_hidden = [10, 10]
output_mode = "destination"
dim_output = 2
-embed_weights_init = IsotropicGaussian(0.001)
+embed_weights_init = IsotropicGaussian(0.01)
mlp_weights_init = IsotropicGaussian(0.01)
-mlp_biases_init = Constant(0.001)
+mlp_biases_init = IsotropicGaussian(0.001)
-learning_rate = 0.0001
-momentum = 0.99
-batch_size = 32
+learning_rate = 0.001
+momentum = 0.9
+batch_size = 100
valid_set = 'cuts/test_times_0'
max_splits = 100