aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--config/joint_simple_mlp_tgtcls_111_cswdtx_bigger.py56
-rw-r--r--config/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py59
-rw-r--r--config/joint_simple_mlp_tgtcls_1_cswdtx_bigger.py55
-rw-r--r--model/joint_simple_mlp_tgtcls.py2
-rwxr-xr-xtrain.py6
5 files changed, 175 insertions, 3 deletions
diff --git a/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger.py b/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger.py
new file mode 100644
index 0000000..8adb6e7
--- /dev/null
+++ b/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger.py
@@ -0,0 +1,56 @@
+import cPickle
+
+import model.joint_simple_mlp_tgtcls as model
+
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+
+n_begin_end_pts = 10 # how many points we consider at the beginning and end of the known trajectory
+n_end_pts = 10
+
+n_valid = 1000
+
+with open("%s/arrival-clusters.pkl" % data.path) as f:
+ dest_tgtcls = cPickle.load(f)
+
+# generate target classes for time prediction as a Fibonacci sequence
+time_tgtcls = [1, 2]
+for i in range(21):
+ time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2])
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_size+1, 15),
+ ('origin_stand', data.stands_size+1, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('day_type', 3, 10),
+ ('taxi_id', 448, 10),
+]
+
+# Common network part
+dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
+dim_hidden = [1000]
+
+# Destination prediction part
+dim_hidden_dest = [400]
+dim_output_dest = dest_tgtcls.shape[0]
+
+# Time prediction part
+dim_hidden_time = [400]
+dim_output_time = len(time_tgtcls)
+
+# Cost ratio between distance cost and time cost
+time_cost_factor = 4
+
+embed_weights_init = IsotropicGaussian(0.01)
+mlp_weights_init = IsotropicGaussian(0.1)
+mlp_biases_init = Constant(0.01)
+
+learning_rate = 0.000001
+momentum = 0.99
+batch_size = 200
+
+valid_set = 'cuts/test_times_0'
+
diff --git a/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py b/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py
new file mode 100644
index 0000000..02c8bd8
--- /dev/null
+++ b/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py
@@ -0,0 +1,59 @@
+import cPickle
+
+import model.joint_simple_mlp_tgtcls as model
+
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+
+n_begin_end_pts = 10 # how many points we consider at the beginning and end of the known trajectory
+n_end_pts = 10
+
+n_valid = 1000
+
+with open("%s/arrival-clusters.pkl" % data.path) as f:
+ dest_tgtcls = cPickle.load(f)
+
+# generate target classes for time prediction as a Fibonacci sequence
+time_tgtcls = [1, 2]
+for i in range(21):
+ time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2])
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_size+1, 15),
+ ('origin_stand', data.stands_size+1, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('day_type', 3, 10),
+ ('taxi_id', 448, 10),
+]
+
+# Common network part
+dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
+dim_hidden = [5000]
+
+# Destination prediction part
+dim_hidden_dest = [1000]
+dim_output_dest = dest_tgtcls.shape[0]
+
+# Time prediction part
+dim_hidden_time = [500]
+dim_output_time = len(time_tgtcls)
+
+# Cost ratio between distance cost and time cost
+time_cost_factor = 4
+
+embed_weights_init = IsotropicGaussian(0.01)
+mlp_weights_init = IsotropicGaussian(0.1)
+mlp_biases_init = Constant(0.01)
+
+# apply_dropout = True
+# dropout_p = 0.5
+
+learning_rate = 0.001
+momentum = 0.9
+batch_size = 200
+
+valid_set = 'cuts/test_times_0'
+
diff --git a/config/joint_simple_mlp_tgtcls_1_cswdtx_bigger.py b/config/joint_simple_mlp_tgtcls_1_cswdtx_bigger.py
new file mode 100644
index 0000000..995f858
--- /dev/null
+++ b/config/joint_simple_mlp_tgtcls_1_cswdtx_bigger.py
@@ -0,0 +1,55 @@
+import cPickle
+
+import model.joint_simple_mlp_tgtcls as model
+
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+
+n_begin_end_pts = 7 # how many points we consider at the beginning and end of the known trajectory
+n_end_pts = 7
+
+n_valid = 1000
+
+with open("%s/arrival-clusters.pkl" % data.path) as f:
+ dest_tgtcls = cPickle.load(f)
+
+# generate target classes for time prediction as a Fibonacci sequence
+time_tgtcls = [1, 2]
+for i in range(21):
+ time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2])
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_size+1, 15),
+ ('origin_stand', data.stands_size+1, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('day_type', 3, 10),
+ ('taxi_id', 448, 10),
+]
+
+# Common network part
+dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
+dim_hidden = [5000]
+
+# Destination prediction part
+dim_hidden_dest = []
+dim_output_dest = dest_tgtcls.shape[0]
+
+# Time prediction part
+dim_hidden_time = []
+dim_output_time = len(time_tgtcls)
+
+# Cost ratio between distance cost and time cost
+time_cost_factor = 4
+
+embed_weights_init = IsotropicGaussian(0.01)
+mlp_weights_init = IsotropicGaussian(0.1)
+mlp_biases_init = Constant(0.01)
+
+learning_rate = 0.0001
+momentum = 0.99
+batch_size = 200
+
+valid_set = 'cuts/test_times_0'
diff --git a/model/joint_simple_mlp_tgtcls.py b/model/joint_simple_mlp_tgtcls.py
index 834afbf..0aaf554 100644
--- a/model/joint_simple_mlp_tgtcls.py
+++ b/model/joint_simple_mlp_tgtcls.py
@@ -58,10 +58,12 @@ class Model(object):
hidden = common_mlp.apply(inputs)
dest_cls_probas = dest_mlp.apply(hidden)
+ # dest_cls_probas = theano.printing.Print("dest_cls_probas")(dest_cls_probas)
dest_outputs = tensor.dot(dest_cls_probas, dest_classes)
dest_outputs.name = 'dest_outputs'
time_cls_probas = time_mlp.apply(hidden)
+ # time_cls_probas = theano.printing.Print("time_cls_probas")(time_cls_probas)
time_outputs = tensor.dot(time_cls_probas, time_classes) + x_input_time
time_outputs.name = 'time_outputs'
diff --git a/train.py b/train.py
index 96dd798..677ed45 100755
--- a/train.py
+++ b/train.py
@@ -73,7 +73,7 @@ def setup_test_stream(req_vars):
test = transformers.TaxiAddFirstLastLen(config.n_begin_end_pts, test)
test = transformers.Select(test, tuple(req_vars))
- test_stream = Batch(test, iteration_scheme=ConstantScheme(1000))
+ test_stream = Batch(test, iteration_scheme=ConstantScheme(1))
return test_stream
@@ -100,8 +100,8 @@ def main():
cost=cost,
step_rule=CompositeRule([
RemoveNotFinite(),
- #AdaDelta(decay_rate=0.95),
- Momentum(learning_rate=config.learning_rate, momentum=config.momentum),
+ AdaDelta(),
+ #Momentum(learning_rate=config.learning_rate, momentum=config.momentum),
]),
params=params)