aboutsummaryrefslogtreecommitdiff
path: root/config
diff options
context:
space:
mode:
authorÉtienne Simon <esimon@esimon.eu>2015-07-21 21:08:35 -0400
committerÉtienne Simon <esimon@esimon.eu>2015-07-21 21:08:35 -0400
commit9013799ebca1c426c3c3e9019eb71018b253b025 (patch)
treeb6cdaa6052478ce13204b16b5f42662cd69bd456 /config
parente1673538607a7c8d784013b21b753f0c05c4cc34 (diff)
downloadtaxi-9013799ebca1c426c3c3e9019eb71018b253b025.tar.gz
taxi-9013799ebca1c426c3c3e9019eb71018b253b025.zip
Add bidirectional
Diffstat (limited to 'config')
-rw-r--r--config/bidirectional_1.py31
-rw-r--r--config/bidirectional_tgtcls_1.py36
2 files changed, 67 insertions, 0 deletions
diff --git a/config/bidirectional_1.py b/config/bidirectional_1.py
new file mode 100644
index 0000000..8691357
--- /dev/null
+++ b/config/bidirectional_1.py
@@ -0,0 +1,31 @@
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+from model.bidirectional_tgtcls import Model, Stream
+
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('taxi_id', 448, 10),
+]
+
+hidden_state_dim = 100
+
+dim_hidden = [500, 500]
+
+embed_weights_init = IsotropicGaussian(0.01)
+fork_weights_init = IsotropicGaussian(0.1)
+fork_biases_init = Constant(0.01)
+rec_weights_init = IsotropicGaussian(0.1)
+mlp_weights_init = IsotropicGaussian(0.1)
+mlp_biases_init = Constant(0.01)
+
+batch_size = 20
+batch_sort_size = 20
+
+valid_set = 'cuts/large_valid'
+max_splits = 100
diff --git a/config/bidirectional_tgtcls_1.py b/config/bidirectional_tgtcls_1.py
new file mode 100644
index 0000000..4c9ed3e
--- /dev/null
+++ b/config/bidirectional_tgtcls_1.py
@@ -0,0 +1,36 @@
+import os
+import cPickle
+
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+from model.bidirectional_tgtcls import Model, Stream
+
+
+with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f: tgtcls = cPickle.load(f)
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('taxi_id', 448, 10),
+]
+
+hidden_state_dim = 100
+
+dim_hidden = [500, 500]
+
+embed_weights_init = IsotropicGaussian(0.01)
+fork_weights_init = IsotropicGaussian(0.1)
+fork_biases_init = Constant(0.01)
+rec_weights_init = IsotropicGaussian(0.1)
+mlp_weights_init = IsotropicGaussian(0.1)
+mlp_biases_init = Constant(0.01)
+
+batch_size = 20
+batch_sort_size = 20
+
+valid_set = 'cuts/large_valid'
+max_splits = 100