from theano import tensor, scan from blocks.bricks import Brick # T: INPUT_SEQUENCE_LENGTH # B: BATCH_SIZE # L: OUTPUT_SEQUENCE_LENGTH # C: NUM_CLASSES class CTC(Brick): def apply(l, probs, l_mask=None, probs_mask=None): """ Numeration: Characters 0 to C-1 are true characters Character C is the blank character Inputs: l : L x B : the sequence labelling probs : T x B x C+1 : the probabilities output by the RNN l_mask : L x B probs_mask : T x B Output: the B probabilities of the labelling sequences Steps: - Calculate y' the labelling sequence with blanks - Calculate the recurrence relationship for the alphas - Calculate the sequence of the alphas - Return the probability found at the end of that sequence """ T = probs.shape[0] C = probs.shape[2]-1 L = l.shape[0] S = 2*L+1 B = l.shape[1] # l_blk = l with interleaved blanks l_blk = tensor.zeros((S, B)) l_blk = tensor.set_subtensor(l_blk[1::2,:],l) # dimension of alpha (corresponds to alpha hat in the paper) : # T x B x S # dimension of c : # T x B # first value of alpha (size B x S) alpha0 = tensor.concatenate([ probs[0, :, C], probs[0][tensor.arange(B), l[0]], tensor.zeros((B, S-2)) ], axis=1) c0 = alpha0.sum(axis=1) alpha0 = alpha0 / c0[:,None] # recursion def recursion(p, p_mask, prev_alpha, prev_c): # TODO return prev_alpha[-1], prev_c[-1] # apply the recursion with scan alpha, c = tensor.scan(fn=recursion, sequences=[probs, probs_mask], outputs_info=[alpha0, c0]) # return the probability of the labellings def best_path_decoding(y_hat, y_hat_mask=None): # Easy one ! pass def prefix_search(y_hat, y_hat_mask=None): # Hard one... pass # vim: set sts=4 ts=4 sw=4 sw=4 tw=0 et: