Connectionist Temporal Classification January 13, 2016

den QNS mlt A

L]] C A CH A N

Connectionist Temporal Classification:
Labelling Unsegmented Sequences with

Recurrent Neural Networks
Research Project Report — Probabilistic Graphical Models course

ALEX AUVOLAT THOMAS MESNARDE]
Department of Computer Science Department of Computer Science
Ecole Normale Supérieure de Paris Ecole Normale Supérieure de Paris
alex.auvolat@ens.fr thomas.mesnardlens.fr

Abstract

Many real-world sequence learning tasks require the prediction of sequences of labels
from noisy, unsegmented input data. Recurrent neural networks (RNNs) are powerful se-
quence learners that would seem well suited to such tasks. However, because they require
pre-segmented training data, and post-processing to transform their outputs into label se-
quences, they cannot be applied directly. Connectionist Temporal Classification is a method
for training RNNs to label unsegmented sequences directly, thereby solving both problems.

Project Advisor: Guillaume Obozinski
Course: “Probabilistic Graphical Models”, by E. Bach, S. Lacoste-Julien, G. Obozinski
For the Mathématiques, Vision, Apprentissage (MVA) Master 2 at ENS de Cachan.

%Tf needed, see online at https: //github.com/thomasmesnard/CTC-LSTM for the implementation, open-
sourced under the Apache license.

ECOLE NORMALE SUPERIEURE DE PARIS 1/@ ALEX AUVOLAT, THOMAS MESNARD

http://www.math.ens-cachan.fr/version-anglaise/academics/mva-master-degree-227777.kjsp
http://www.ens-cachan.fr/
https://github.com/thomasmesnard/CTC-LSTM

Connectionist Temporal Classification January 13, 2016

1 Model

Connectionist Temporal Classification (CTC) introduces a new cost function for training re-
current neural networks to label unsegmented sequences directly. To use this cost function, we
introduce an additional blank symbol in the possible labels that the recurrent neural networks
can output. We remind that the output layer of the recurrent neural networks correspond to
probabilities over all possible labels.

This additional blank symbol give freedom to the RNN to give the label for a section of
input at any moment, and especially when it is sure of its answer, simply by outputting the
blank label the rest of the time.

The blank label also allows the network to give a strong probability to the correct label at a
very localized point in time, whereas in a classical setup we observe distributed probabilities
over all labels at each time step. An example of both behaviors can be observed on speech data
in Figure T}

Waveform

=

label probability

o

Figure 1: Output of classic framewise phoneme classification and RNN trained with CTC

As the output sequence is shorter than the input sequence, there are many possible align-
ments with the correct label sequence. We want the recurrent neural network to learn one of
these correct alignments on its own. Using dynamic programing to sum over all the possible
alignments, CTC provides gradients for the backpropagation phase to train the RNN to learn
a good alignment.

In the basic setup shown in Figure 2} we use stacked bidirectional recurrent neural net-
works. The CTC brick takes as inputs the output of the last bidirectional recurrent neural
network as well as the target label sequence, and calculates the cost of the label. When differ-
entiated, the CTC brick gives back gradients to train the RNN and learn a good alignment.

We use the following notation:

e yi: output at time ¢ for symbol k
e [: the label sequence for which we want to calculate a cost

e [': the same label sequence but with blanks added between each letters

ECOLE NORMALE SUPERIEURE DE PARIS 2/@ ALEX AUVOLAT, THOMAS MESNARD

Connectionist Temporal Classification January 13, 2016

Target Seq. Cost

l T

| CTC layer | c

Input Sequence

Figure 2: Simple bidirectional RNN Figure 3: Computation graph for a;(s) (corre-
model with CTC cost layer sponds to an unrolling of the automaton that

recognizes B1(1))

1.1 First Definition

CTC is a dynamic programming algorithm that calculates the following variable:

t
a(s)= > T[4, (1)

reNT. t'=1
B(ﬂ-lzt):lllzs

Where:

e Jis the transform that removes all blanks and duplicates

e 7€ NT : B(m.4) = ., corresponds to all possible paths among all possible labels from
time step 1 to ¢t which give the s first correct labels after we apply the B transform.

e 4! corresponds to the output of the RNN at time ¢’

We can see that o4(s) corresponds to the sum, over all possible paths between time step
1 and ¢ that will give the s first correct labels after removing all banks and duplicates, of the
product of the probabilities output by the RNN on these paths.

The formulation described in Equation([I]is equivalent to the unrolled automaton presented
in Figure 3| To allow for blanks in the output paths, we consider a modified label sequence !/,
with blanks added to the beginning and the end and inserted between every pair of labels. The
length of I’ is therefore 2|/| + 1. This allows transition between blank and non-blank labels, and
also those between any pair of distinct non-blank labels.

1.2 Recursive Definition

The definition of o (s) given above enables us to understand what this function calculates,
but unfortunately it is not practical to compute. We will now see a recursive definition of the
a¢(s) which provides a dynamic programming algorithm for our problem. This calculation is
illustrated in Figure

We first have to initiate a; with at first a blank label, then the first correct label and finally
just zeros. Indeed, it is impossible that more than one correct label derive from only one output
of the RNN:

ECOLE NORMALE SUPERIEURE DE PARIS 3/@ ALEX AUVOLAT, THOMAS MESNARD

Connectionist Temporal Classification January 13, 2016

ai(l) = y
a1(2) =y,
ai(s) = 0,Vs>2

We then define the recurrence relations:

a(s) = ax(s)yy, ifll =borl, ,=1.
(Qe(s) + a—1(s — 2))y;, otherwise

With:

a(s) = ay—1(s) +a—1(s — 1)

Finally, we have:
p(llz) = ar(l')) + ar(l'| - 1)

Which give us, given an input, the probability of having a particular sequence.

1.3 Analysis of the Gradient Provided by CTC

»
[2
——
¥
|
_
=3
Mo
e e —
A—

output error

Figure 4: Evolution of the CTC error signal

In Figure[d the left column shows the output activations for the same sequence at various
stages of training. The dashed line corresponds to the blank unit. The right column shows the
corresponding error signals, i.e. the gradient which is sent back to the RNN.

On the early stage of the training (a), the network does not make predictions because it has
small random weights, the error is only determined by the target sequence and is localized
only very vaguely.

During the training (b), the network begins to make predictions and the error localizes
around them.

At the end of the training (c), the network strongly predicts the correct labels at very specific
times, and the rest of the time outputs the blank label. The error signal becomes null since there
is no error.

ECOLE NORMALE SUPERIEURE DE PARIS 4/]§| ALEX AUVOLAT, THOMAS MESNARD

Connectionist Temporal Classification January 13, 2016

2 Experiments

We made an implementation of the model using Theano and Blocks which is a Theano
framework for building and training neural networks. The code is available at the following
address: https://github.com/thomasmesnard/CTC-LSTM.

As Theano provides an automated symbolic differentiation tool, we implemented the for-
ward recursion for a;(s) and let Theano derive the backward calculation. To avoid numerical
underflow, two methods can be applied, which we both implemented:

e Normalize at each time step t the oz Cy =Y, au(s) du(s) = O"‘T(:’)

e Do our calculations in the logarithmic domain

2.1 Toy Dataset

We first tried our implementation on a simple task. Our dataset is composed of the follow-
ing sequences, where each digit is randomly repeated a random number of times.

1%2*3*4*5* — 1
172*3*2*1* — 2
5*4*3*2*1* — 3
5*4*3*4*5* — 4

The network has to learn the previous association. The two first sequences have an overlap
on the three first digits. The network has to wait until the fourth digit to know if it is either a
1 or a 2. We can see here the importance of the blank label. Indeed, the network will have to
outputs the blank label until the fourth label is presented to be able to give the correct label.
The same reasoning can be applied for the two last sequences.

We have two versions of the toy dataset: on the first version each piece of the sequence is
perfectly identifiable as each character appears at least once (the input sequence is therefore at
least 5 times as long as the target sequence). On the second version some characters may be
omitted in the input, adding stochasticity to the task. CTC provides very good results on the
two tasks (shown in Table[T]and Table2).

Results train valid Results train valid
Output sequence length 5-50 5-50 Output sequence length 5-20 5-20
Error rate 0 0 Error rate 0.62 0.63
Mean edit distance 0 0 Mean edit distance 1.0 1.1
Errors per character 0 0 Errors per character 0.08 0.09
Table 1: Performances of CTC on our toy Table 2: Performances of CTC on our toy
dataset, with perfect input sequences dataset, with imperfect input sequences

We observe that the model performs flawlessly on the first task. On the other task, the
error rate is not as low as expected but we remind that it corresponds to the rate on which
the network is able to find the complete target sequence. A more meaningful measure is the
error rate per character which is only 9% on the validation set. We deduce from these two
results that the model is able to perfectly learn the rule that maps the input sequences to the
targets, but even though, it cannot achieve perfect results on the second task as information is
sometimes missing in the input. Both implementations converge in less than 1000 time steps.

ECOLE NORMALE SUPERIEURE DE PARIS 5/@ ALEX AUVOLAT, THOMAS MESNARD

https://github.com/Theano/Theano
https://github.com/mila-udem/blocks/
https://github.com/thomasmesnard/CTC-LSTM

Connectionist Temporal Classification January 13, 2016

2.2 TIMIT

400

— train cost | | 13

300 8 1.1

350 +

250 | 1.0
0.9

0.8+
0.7 -
0.6+
051

! 0.4 L L L n L L .
6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000

200 +
150+
100 -

50 1
0 1000 2000 3000 4000 5000

Figure 5: Training cost of the CTC model on TIMIT Figure 6: Error rate of the CTC model on TIMIT

Convolution layers Filters Filter size Stride Skip Normalize
Layer 1 20 200 10 Yes Yes
Layer 2 20 200 10 Yes Yes
Layer 3 20 30 2 Yes Yes
Layer 4 100 20 2 No Yes
Recurrent layers Size Type Bidirectional Skip Normalize
Layer 1 50 LSTM Yes Yes No
Layer 2 50 LSTM Yes Yes No

Table 3: Structure of the Deep Neural Network for the TIMIT dataset

We then tried on the classical TIMIT dataset. It is a raw speech signal dataset of 4120
sentences labelled by phonemes or by words. The average audio length is 50 000 samples and
the average sentence length is 38 phonemes.

To avoid hand-crafted feature extraction on the speech signal, we use convolution layers
before the bidirectional LSTM layers. We then use bidirectional LSTM layers, and of course the
CTC cost function. We use noise and normalization on intermediate layers for regularization.
The structure of our model is described in Table 3]

We were able to attain a 50% phoneme error rate on the validation set after about 150
epochs of training (see Figure[6). This result is not as good as the 30% achieved by the original
paper [1], however it is an extremely good result for the model as we do not use hand-crafted
preprocessing on the data. This shows that the convolution layers are able to learn the filters
necessary for audio processing on speech by themselves.

3 Conclusion

CTC is a powerful cost function for training RNNs on unsegmented data, now largely used
in major commercial applications. We were able to get very good results using CTC on a toy
dataset. We proposed a way of processing speech data with convolutional neural networks
and were able to train a convnet-LSTM-CTC model with satisfactory results on TIMIT.

References
[1] Alex Graves, Santiago Ferndndez, Faustino Gomez, and Jiirgen Schmidhuber. Connectionist tem-

poral classification: labelling unsegmented sequence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Machine learning, pages 369-376. ACM, 2006.

ECOLE NORMALE SUPERIEURE DE PARIS 6/@ ALEX AUVOLAT, THOMAS MESNARD

	Model
	First Definition
	Recursive Definition
	Analysis of the Gradient Provided by CTC

	Experiments
	Toy Dataset
	TIMIT

	Conclusion

