(* Cours "Sémantique et Application à la Vérification de programmes" Antoine Miné 2014 Ecole normale supérieure, Paris, France / CNRS / INRIA *) (* This file is derived from the map.ml file from the OCaml distribution. Changes are marked with the [AM] symbol. Based on rev. 10468 2010-05-25 13:29:43Z Original copyright follows. *) (***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../LICENSE. *) (* *) (***********************************************************************) module type OrderedType = sig type t val compare: t -> t -> int end module type S = sig type key type +'a t val empty: 'a t val is_empty: 'a t -> bool val mem: key -> 'a t -> bool val add: key -> 'a -> 'a t -> 'a t val singleton: key -> 'a -> 'a t val remove: key -> 'a t -> 'a t val merge: (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val iter: (key -> 'a -> unit) -> 'a t -> unit val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val for_all: (key -> 'a -> bool) -> 'a t -> bool val exists: (key -> 'a -> bool) -> 'a t -> bool val filter: (key -> 'a -> bool) -> 'a t -> 'a t val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t val cardinal: 'a t -> int val bindings: 'a t -> (key * 'a) list val min_binding: 'a t -> (key * 'a) val max_binding: 'a t -> (key * 'a) val choose: 'a t -> (key * 'a) val split: key -> 'a t -> 'a t * 'a option * 'a t val find: key -> 'a t -> 'a val map: ('a -> 'b) -> 'a t -> 'b t val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t (* [AM] additions by Antoine Mine' *) val of_list: (key * 'a) list -> 'a t val map2: (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t val iter2: (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit val fold2: (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c val for_all2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool val exists2: (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool val map2z: (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t val iter2z: (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit val fold2z: (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b val for_all2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool val exists2z: (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool val map2o: (key -> 'a -> 'c) -> (key -> 'b -> 'c) -> (key -> 'a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t val iter2o: (key -> 'a -> unit) -> (key -> 'b -> unit) -> (key -> 'a -> 'b -> unit) -> 'a t -> 'b t -> unit val fold2o: (key -> 'a -> 'c -> 'c) -> (key -> 'b -> 'c -> 'c) -> (key -> 'a -> 'b -> 'c -> 'c) -> 'a t -> 'b t -> 'c -> 'c val for_all2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool val exists2o: (key -> 'a -> bool) -> (key -> 'b -> bool) -> (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool val map2zo: (key -> 'a -> 'a) -> (key -> 'a -> 'a) -> (key -> 'a -> 'a -> 'a) -> 'a t -> 'a t -> 'a t val iter2zo: (key -> 'a -> unit) -> (key -> 'a -> unit) -> (key -> 'a -> 'a -> unit) -> 'a t -> 'a t -> unit val fold2zo: (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'b -> 'b) -> (key -> 'a -> 'a -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b val for_all2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool val exists2zo: (key -> 'a -> bool) -> (key -> 'a -> bool) -> (key -> 'a -> 'a -> bool) -> 'a t -> 'a t -> bool val map_slice: (key -> 'a -> 'a) -> 'a t -> key -> key -> 'a t val iter_slice: (key -> 'a -> unit) -> 'a t -> key -> key -> unit val fold_slice: (key -> 'a -> 'b -> 'b) -> 'a t -> key -> key -> 'b -> 'b val for_all_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool val exists_slice: (key -> 'a -> bool) -> 'a t -> key -> key -> bool val key_equal: 'a t -> 'a t -> bool val key_subset: 'a t -> 'a t -> bool val find_greater: key -> 'a t -> key * 'a val find_less: key -> 'a t -> key * 'a val find_greater_equal: key -> 'a t -> key * 'a val find_less_equal: key -> 'a t -> key * 'a end module Make(Ord: OrderedType) = (struct type key = Ord.t type 'a t = Empty | Node of 'a t * key * 'a * 'a t * int let height = function Empty -> 0 | Node(_,_,_,_,h) -> h let create l x d r = let hl = height l and hr = height r in Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1)) let singleton x d = Node(Empty, x, d, Empty, 1) let bal l x d r = let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Mapext.bal" | Node(ll, lv, ld, lr, _) -> if height ll >= height lr then create ll lv ld (create lr x d r) else begin match lr with Empty -> invalid_arg "Mapext.bal" | Node(lrl, lrv, lrd, lrr, _)-> create (create ll lv ld lrl) lrv lrd (create lrr x d r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Mapext.bal" | Node(rl, rv, rd, rr, _) -> if height rr >= height rl then create (create l x d rl) rv rd rr else begin match rl with Empty -> invalid_arg "Mapext.bal" | Node(rll, rlv, rld, rlr, _) -> create (create l x d rll) rlv rld (create rlr rv rd rr) end end else Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1)) let empty = Empty let is_empty = function Empty -> true | _ -> false let rec add x data = function Empty -> Node(Empty, x, data, Empty, 1) | Node(l, v, d, r, h) -> let c = Ord.compare x v in if c = 0 then Node(l, x, data, r, h) else if c < 0 then bal (add x data l) v d r else bal l v d (add x data r) let rec find x = function Empty -> raise Not_found | Node(l, v, d, r, _) -> let c = Ord.compare x v in if c = 0 then d else find x (if c < 0 then l else r) let rec mem x = function Empty -> false | Node(l, v, d, r, _) -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec min_binding = function Empty -> raise Not_found | Node(Empty, x, d, r, _) -> (x, d) | Node(l, x, d, r, _) -> min_binding l let rec max_binding = function Empty -> raise Not_found | Node(l, x, d, Empty, _) -> (x, d) | Node(l, x, d, r, _) -> max_binding r let rec remove_min_binding = function Empty -> invalid_arg "Mapext.remove_min_elt" | Node(Empty, x, d, r, _) -> r | Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r let merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> let (x, d) = min_binding t2 in bal t1 x d (remove_min_binding t2) let rec remove x = function Empty -> Empty | Node(l, v, d, r, h) -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then bal (remove x l) v d r else bal l v d (remove x r) let rec iter f = function Empty -> () | Node(l, v, d, r, _) -> iter f l; f v d; iter f r let rec map f = function Empty -> Empty | Node(l, v, d, r, h) -> let l' = map f l in let d' = f d in let r' = map f r in Node(l', v, d', r', h) let rec mapi f = function Empty -> Empty | Node(l, v, d, r, h) -> let l' = mapi f l in let d' = f v d in let r' = mapi f r in Node(l', v, d', r', h) let rec fold f m accu = match m with Empty -> accu | Node(l, v, d, r, _) -> fold f r (f v d (fold f l accu)) (* [AM] changed to call p in the key order *) let rec for_all p = function Empty -> true | Node(l, v, d, r, _) -> for_all p l && p v d && for_all p r (* [AM] changed to call p in the key order *) let rec exists p = function Empty -> false | Node(l, v, d, r, _) -> exists p l || p v d || exists p r (* [AM] changed to call p in the key order *) let filter p s = fold (fun k d a -> if p k d then add k d a else a) s Empty let partition p s = let rec part (t, f as accu) = function | Empty -> accu | Node(l, v, d, r, _) -> part (part (if p v d then (add v d t, f) else (t, add v d f)) l) r in part (Empty, Empty) s (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v d r = match (l, r) with (Empty, _) -> add v d r | (_, Empty) -> add v d l | (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) -> if lh > rh + 2 then bal ll lv ld (join lr v d r) else if rh > lh + 2 then bal (join l v d rl) rv rd rr else create l v d r (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> let (x, d) = min_binding t2 in join t1 x d (remove_min_binding t2) let concat_or_join t1 v d t2 = match d with | Some d -> join t1 v d t2 | None -> concat t1 t2 let rec split x = function Empty -> (Empty, None, Empty) | Node(l, v, d, r, _) -> let c = Ord.compare x v in if c = 0 then (l, Some d, r) else if c < 0 then let (ll, pres, rl) = split x l in (ll, pres, join rl v d r) else let (lr, pres, rr) = split x r in (join l v d lr, pres, rr) let rec merge f s1 s2 = match (s1, s2) with (Empty, Empty) -> Empty | (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 -> let (l2, d2, r2) = split v1 s2 in concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2) | (_, Node (l2, v2, d2, r2, h2)) -> let (l1, d1, r1) = split v2 s1 in concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2) | _ -> assert false type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration let rec cons_enum m e = match m with Empty -> e | Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e)) let compare cmp m1 m2 = let rec compare_aux e1 e2 = match (e1, e2) with (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) -> let c = Ord.compare v1 v2 in if c <> 0 then c else let c = cmp d1 d2 in if c <> 0 then c else compare_aux (cons_enum r1 e1) (cons_enum r2 e2) in compare_aux (cons_enum m1 End) (cons_enum m2 End) let equal cmp m1 m2 = let rec equal_aux e1 e2 = match (e1, e2) with (End, End) -> true | (End, _) -> false | (_, End) -> false | (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) -> Ord.compare v1 v2 = 0 && cmp d1 d2 && equal_aux (cons_enum r1 e1) (cons_enum r2 e2) in equal_aux (cons_enum m1 End) (cons_enum m2 End) let rec cardinal = function Empty -> 0 | Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r let rec bindings_aux accu = function Empty -> accu | Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l let bindings s = bindings_aux [] s let choose = min_binding (* [AM] additions by Antoine Mine' *) (* ******************************* *) let of_list l = List.fold_left (fun acc (k,x) -> add k x acc) empty l (* similar to split, but returns unbalanced trees *) let rec cut k = function Empty -> Empty,None,Empty | Node (l1,k1,d1,r1,h1) -> let c = Ord.compare k k1 in if c < 0 then let l2,d2,r2 = cut k l1 in (l2,d2,Node (r2,k1,d1,r1,h1)) else if c > 0 then let l2,d2,r2 = cut k r1 in (Node (l1,k1,d1,l2,h1),d2,r2) else (l1,Some d1,r1) (* binary operations that fail on maps with different keys *) (* functions are called in increasing key order *) let rec map2 f m1 m2 = match m1 with | Empty -> if m2 = Empty then Empty else invalid_arg "Mapext.map2" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> Node (map2 f l1 l2, k, f k d1 d2, map2 f r1 r2, h1) | _, None, _ -> invalid_arg "Mapext.map2" let rec iter2 f m1 m2 = match m1 with | Empty -> if m2 = Empty then () else invalid_arg "Mapext.iter2" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> iter2 f l1 l2; f k d1 d2; iter2 f r1 r2 | _, None, _ -> invalid_arg "Mapext.iter2" let rec fold2 f m1 m2 acc = match m1 with | Empty -> if m2 = Empty then acc else invalid_arg "Mapext.fold2" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> fold2 f r1 r2 (f k d1 d2 (fold2 f l1 l2 acc)) | _, None, _ -> invalid_arg "Mapext.fold2" let rec for_all2 f m1 m2 = match m1 with | Empty -> if m2 = Empty then true else invalid_arg "Mapext.for_all2" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> for_all2 f l1 l2 && f k d1 d2 && for_all2 f r1 r2 | _, None, _ -> invalid_arg "Mapext.for_all2" let rec exists2 f m1 m2 = match m1 with | Empty -> if m2 = Empty then false else invalid_arg "Mapext.exists2" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> exists2 f l1 l2 || f k d1 d2 || exists2 f r1 r2 | _, None, _ -> invalid_arg "Mapext.exists2" (* as above, but ignore physically equal subtrees - for map, assumes: f k d d = d - for iter, assumes: f k d d has no effect - for fold, assumes: k f d d acc = acc - for for_all, assumes: f k d d = true - for exists, assumes: f k d d = false *) let rec map2z f m1 m2 = if m1 == m2 then m1 else match m1 with | Empty -> if m2 = Empty then Empty else invalid_arg "Mapext.map2z" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> let d = if d1 == d2 then d1 else f k d1 d2 in Node (map2z f l1 l2, k, d, map2z f r1 r2, h1) | _, None, _ -> invalid_arg "Mapext.map2z" let rec iter2z f m1 m2 = if m1 == m2 then () else match m1 with | Empty -> if m2 = Empty then () else invalid_arg "Mapext.iter2z" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> iter2z f l1 l2; (if d1 != d2 then f k d1 d2); iter2z f r1 r2 | _, None, _ -> invalid_arg "Mapext.iter2z" let rec fold2z f m1 m2 acc = if m1 == m2 then acc else match m1 with | Empty -> if m2 = Empty then acc else invalid_arg "Mapext.fold2z" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> let acc = fold2z f l1 l2 acc in let acc = if d1 == d2 then acc else f k d1 d2 acc in fold2z f r1 r2 acc | _, None, _ -> invalid_arg "Mapext.fold2z" let rec for_all2z f m1 m2 = (m1 == m2) || (match m1 with | Empty -> if m2 = Empty then true else invalid_arg "Mapext.for_all2z" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> (for_all2z f l1 l2) && (d1 == d2 || f k d1 d2) && (for_all2z f r1 r2) | _, None, _ -> invalid_arg "Mapext.for_all2z" ) let rec exists2z f m1 m2 = (m1 != m2) && (match m1 with | Empty -> if m2 = Empty then false else invalid_arg "Mapext.exists2z" | Node (l1,k,d1,r1,h1) -> match cut k m2 with | l2, Some d2, r2 -> (exists2z f l1 l2) || (d1 != d2 && f k d1 d2) || (exists2z f r1 r2) | _, None, _ -> invalid_arg "Mapext.exists2z" ) (* as above, but allow maps with different keys *) let rec map2o f1 f2 f m1 m2 = match m1 with | Empty -> mapi f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in let l = map2o f1 f2 f l1 l2 in let d = match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2 in let r = map2o f1 f2 f r1 r2 in join l k d r let rec iter2o f1 f2 f m1 m2 = match m1 with | Empty -> iter f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in iter2o f1 f2 f l1 l2; (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2); iter2o f1 f2 f r1 r2 let rec fold2o f1 f2 f m1 m2 acc = match m1 with | Empty -> fold f2 m2 acc | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in let acc = fold2o f1 f2 f l1 l2 acc in let acc = match d2 with | None -> f1 k d1 acc | Some d2 -> f k d1 d2 acc in fold2o f1 f2 f r1 r2 acc let rec for_all2o f1 f2 f m1 m2 = match m1 with | Empty -> for_all f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in (for_all2o f1 f2 f l1 l2) && (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2) && (for_all2o f1 f2 f r1 r2) let rec exists2o f1 f2 f m1 m2 = match m1 with | Empty -> exists f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in (exists2o f1 f2 f l1 l2) || (match d2 with None -> f1 k d1 | Some d2 -> f k d1 d2) || (exists2o f1 f2 f r1 r2) (* all together now *) let rec map2zo f1 f2 f m1 m2 = if m1 == m2 then m1 else match m1 with | Empty -> mapi f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in let l = map2zo f1 f2 f l1 l2 in let d = match d2 with | None -> f1 k d1 | Some d2 -> if d1 == d2 then d1 else f k d1 d2 in let r = map2zo f1 f2 f r1 r2 in join l k d r let rec iter2zo f1 f2 f m1 m2 = if m1 == m2 then () else match m1 with | Empty -> iter f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in iter2zo f1 f2 f l1 l2; (match d2 with | None -> f1 k d1 | Some d2 -> if d1 != d2 then f k d1 d2); iter2zo f1 f2 f r1 r2 let rec fold2zo f1 f2 f m1 m2 acc = if m1 == m2 then acc else match m1 with | Empty -> fold f2 m2 acc | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in let acc = fold2zo f1 f2 f l1 l2 acc in let acc = match d2 with | None -> f1 k d1 acc | Some d2 -> if d1 == d2 then acc else f k d1 d2 acc in fold2zo f1 f2 f r1 r2 acc let rec for_all2zo f1 f2 f m1 m2 = (m1 == m2) || (match m1 with | Empty -> for_all f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in (for_all2zo f1 f2 f l1 l2) && (match d2 with None -> f1 k d1 | Some d2 -> d1 == d2 || f k d1 d2) && (for_all2zo f1 f2 f r1 r2) ) let rec exists2zo f1 f2 f m1 m2 = (m1 != m2) && (match m1 with | Empty -> exists f2 m2 | Node (l1,k,d1,r1,h1) -> let l2, d2, r2 = cut k m2 in (exists2zo f1 f2 f l1 l2) || (match d2 with None -> f1 k d1 | Some d2 -> d1 != d2 && f k d1 d2) || (exists2zo f1 f2 f r1 r2) ) (* iterators limited to keys between two bounds *) let rec map_slice f m lo hi = match m with | Empty -> Empty | Node (l,k,d,r,h) -> let c1, c2 = Ord.compare k lo, Ord.compare k hi in let l = if c1 > 0 then map_slice f l lo k else l in let d = if c1 >= 0 && c2 <= 0 then f k d else d in let r = if c2 < 0 then map_slice f r k hi else r in Node (l,k,d,r,h) let rec iter_slice f m lo hi = match m with | Empty -> () | Node (l,k,d,r,_) -> let c1, c2 = Ord.compare k lo, Ord.compare k hi in if c1 > 0 then iter_slice f l lo k; if c1 >= 0 && c2 <= 0 then f k d; if c2 < 0 then iter_slice f r k hi let rec fold_slice f m lo hi acc = match m with | Empty -> acc | Node (l,k,d,r,_) -> let c1, c2 = Ord.compare k lo, Ord.compare k hi in let acc = if c1 > 0 then fold_slice f l lo k acc else acc in let acc = if c1 >= 0 && c2 <= 0 then f k d acc else acc in if c2 < 0 then fold_slice f r k hi acc else acc let rec for_all_slice f m lo hi = match m with | Empty -> true | Node (l,k,d,r,_) -> let c1, c2 = Ord.compare k lo, Ord.compare k hi in (c1 <= 0 || for_all_slice f l lo k) && (c1 < 0 || c2 > 0 || f k d) && (c2 >= 0 || for_all_slice f r k hi) let rec exists_slice f m lo hi = match m with | Empty -> false | Node (l,k,d,r,_) -> let c1, c2 = Ord.compare k lo, Ord.compare k hi in (c1 > 0 && exists_slice f l lo k) || (c1 >= 0 && c2 <= 0 && f k d) || (c2 < 0 && exists_slice f r k hi) (* key set comparison *) let rec key_equal m1 m2 = (m1 == m2) || (match m1 with | Empty -> m2 = Empty | Node (l1, k, _, r1, _) -> match cut k m2 with | _, None, _ -> false | l2, Some _, r2 -> key_equal l1 l2 && key_equal r1 r2 ) let rec key_subset m1 m2 = (m1 == m2) || (match m1 with | Empty -> true | Node (l1, k, _, r1, _) -> match cut k m2 with | _, None, _ -> false | l2, Some _, r2 -> key_subset l1 l2 && key_subset r1 r2 ) (* nagivation *) let find_greater_equal k m = let rec aux m found = match m with | Empty -> (match found with None -> raise Not_found | Some x -> x) | Node (l, kk, d, r, _) -> let c = Ord.compare k kk in if c = 0 then kk, d else if c > 0 then aux r found else aux l (Some (kk, d)) in aux m None let find_greater k m = let rec aux m found = match m with | Empty -> (match found with None -> raise Not_found | Some x -> x) | Node (l, kk, d, r, _) -> let c = Ord.compare k kk in if c >= 0 then aux r found else aux l (Some (kk, d)) in aux m None let find_less_equal k m = let rec aux m found = match m with | Empty -> (match found with None -> raise Not_found | Some x -> x) | Node (l, kk, d, r, _) -> let c = Ord.compare k kk in if c = 0 then kk, d else if c < 0 then aux l found else aux r (Some (kk, d)) in aux m None let find_less k m = let rec aux m found = match m with | Empty -> (match found with None -> raise Not_found | Some x -> x) | Node (l, kk, d, r, _) -> let c = Ord.compare k kk in if c <= 0 then aux l found else aux r (Some (kk, d)) in aux m None end: S with type key = Ord.t)