open Ast open Util open Ast_util open Interface module I : INTERPRET = struct (* Values for variables *) exception Bad_datatype type value = | VInt of int | VBool of bool | VReal of float | VState of id | VPrevious of value list | VBusy (* intermediate value : calculating ! *) | VCalc of (unit -> unit) let int_value i = VInt i let bool_value b = VBool b let real_value r = VReal r let as_int = function | VInt i -> i | _ -> raise Bad_datatype let as_bool = function | VBool b -> b | _ -> raise Bad_datatype let as_real = function | VReal r -> r | _ -> raise Bad_datatype let rec str_repr_of_val = function | VInt i -> string_of_int i | VReal r -> string_of_float r | VBool b -> if b then "true" else "false" | VState s -> "state " ^ s | VPrevious p -> "[" ^ List.fold_left (fun s v -> (if s = "" then "" else s ^ ", ") ^ str_repr_of_val v) "" p ^ "]" | VBusy -> "#" | VCalc _ -> "()" (* States of the interpret *) (* path to node * subscope prefix in node * equations in scope *) type scope = id * id * eqn ext list type state = { p : prog; root_scope : scope; outputs : id list; save : value VarMap.t; } let print_state fmt st = VarMap.iter (fun id v -> Format.fprintf fmt "%s = %s@." id (str_repr_of_val v)) st.save type io = (id * value) list (* Internal type env : contains the environment for state calculation *) type env = { st : state; vars : (id, value) Hashtbl.t; } (* get_var : env -> id -> id -> value Gets the value of a variable relative to a node path. *) let rec get_var env node id = let p = node^"/"^id in try match Hashtbl.find env.vars p with | VCalc f -> Hashtbl.replace env.vars p VBusy; f (); get_var env node id | VBusy -> combinatorial_cycle p | x -> x with | Not_found -> no_variable p (* eval_expr : env -> (id * id) -> expr ext -> value list *) let rec eval_expr env (node, prefix) exp = let sub_eval = eval_expr env (node, prefix) in match fst exp with | AST_identifier (id, _) -> [loc_error (snd exp) (get_var env node) id] | AST_idconst (id, _) -> begin try [VarMap.find ("cst/"^id) env.st.save] with Not_found -> loc_error (snd exp) no_variable id end (* on numerical values *) | AST_int_const (i, _) -> [VInt (int_of_string i)] | AST_real_const (r, _) -> [VReal (float_of_string r)] | AST_unary(AST_UPLUS, e) -> sub_eval e | AST_unary(AST_UMINUS, e) -> begin match sub_eval e with | [VInt x] -> [VInt (-x)] | [VReal x] -> [VReal(-. x)] | _ -> type_error "Unary on non-numerical." end | AST_binary(op, e1, e2) -> let iop, fop = match op with | AST_PLUS -> (+), (+.) | AST_MINUS -> (-), (-.) | AST_MUL -> ( * ), ( *. ) | AST_DIV -> (/), (/.) | AST_MOD -> (mod), mod_float in begin match sub_eval e1, sub_eval e2 with | [VInt a], [VInt b] -> [VInt (iop a b)] | [VReal a], [VReal b] -> [VReal(fop a b)] | _ -> type_error "Invalid arguments for numerical binary." end (* on boolean values *) | AST_bool_const b -> [VBool b] | AST_binary_rel(op, e1, e2) -> let r = match op with | AST_EQ -> (=) | AST_NE -> (<>) | AST_LT -> (<) | AST_LE -> (<=) | AST_GT -> (>) | AST_GE -> (>=) in begin match sub_eval e1, sub_eval e2 with | [VInt a], [VInt b] -> [VBool (r a b)] | [VReal a], [VReal b] -> [VBool (r a b)] | [VBool a], [VBool b] -> [VBool (r a b)] | _ -> type_error "Invalid arguments for binary relation." end | AST_binary_bool(op, e1, e2) -> let r = match op with | AST_AND -> (&&) | AST_OR -> (||) in begin match sub_eval e1, sub_eval e2 with | [VBool a], [VBool b] -> [VBool (r a b)] | _ -> type_error "Invalid arguments for boolean relation." end | AST_not(e) -> begin match sub_eval e with | [VBool b] -> [VBool (not b)] | _ -> type_error "Invalid arguments for boolean negation." end (* temporal primitives *) | AST_pre(exp, n) -> begin try match VarMap.find (node^"/"^prefix^n) env.st.save with | VPrevious x -> x | _ -> assert false with Not_found -> [] end | AST_arrow(before, after) -> begin try match VarMap.find (node^"/"^prefix^"init") env.st.save with | VBool true -> sub_eval before | VBool false -> sub_eval after | _ -> assert false with Not_found -> assert false end (* other *) | AST_if(cond, a, b) -> begin match sub_eval cond with | [VBool true] -> sub_eval a | [VBool false] -> sub_eval b | _ -> type_error "Invalid condition in if." end | AST_instance((f, _), args, nid) -> let (n, _) = find_node_decl env.st.p f in List.map (fun (_, (id, _), _) -> get_var env (node^"/"^nid) id) n.ret (* reset_scope : env -> scope -> unit Sets all the init variables to true, and all the state variables to initial state. Does this recursively. The state reset done by this on the environment is only applied on the next iteration, when the state info has been extracted by extract_st. *) let rec reset_scope env (node, prefix, eqs) = Hashtbl.replace env.vars (node^"/"^prefix^"init") (VBool true); let do_exp e = List.iter (fun (id, eqs, _) -> reset_scope env (node^"/"^id, "", eqs)) (extract_instances env.st.p e) in let do_eq (e, _) = match e with | AST_assign(_, e) | AST_assume(_, e) | AST_guarantee(_, e) -> do_exp e | AST_automaton (aid, states, _) -> let (init_state, _) = List.find (fun (st, _) -> st.initial) states in Hashtbl.replace env.vars (node^"/"^aid^".state") (VState init_state.st_name); List.iter (fun (st, _) -> reset_scope env (node, aid^"."^st.st_name^".", st.body)) states | AST_activate (x, _) -> let rec aux = function | AST_activate_if (_, a, b) -> aux a; aux b | AST_activate_body b -> reset_scope env (node, b.act_id^".", b.body) in aux x in List.iter do_eq eqs (* activate_scope : env -> scope -> unit Adds functions for calculating the variables in this scope. For assign : simple ! For automaton : lazily select+activate automaton state (would enable implementation of strong transitions) For activate : lazily select+activate active block *) let rec activate_scope env (node, prefix, eqs) = Hashtbl.replace env.vars (node^"/"^prefix^"act") (VBool true); let do_expr e = List.iter (fun (id, eqs, args) -> activate_scope env (node^"/"^id, "", eqs); let do_arg ((_,(name,_),_), expr) = let apath = node^"/"^id^"/"^name in let calc () = match eval_expr env (node, prefix) expr with | [v] -> Hashtbl.replace env.vars apath v | _ -> loc_error (snd expr) error "Unsupported arity for argument." in Hashtbl.replace env.vars apath (VCalc calc) in List.iter do_arg args) (extract_instances env.st.p e) in let do_eq (e, _) = match e with | AST_assign(vars, e) -> do_expr e; let calc () = let vals = eval_expr env (node, prefix) e in List.iter2 (fun (id, _) v -> Hashtbl.replace env.vars (node^"/"^id) v) vars vals in List.iter (fun (id, _) -> Hashtbl.replace env.vars (node^"/"^id) (VCalc (calc))) vars | AST_assume(_,e) | AST_guarantee(_,e) -> do_expr e | AST_activate(t, vars) -> let rec do_tree = function | AST_activate_body _ -> () | AST_activate_if(c, a, b) -> do_expr c; do_tree a; do_tree b in do_tree t; let rec needed x () = match x with | AST_activate_body b -> activate_scope env (node, b.act_id^".", b.body) | AST_activate_if (c, t, f) -> begin match eval_expr env (node, prefix) c with | [VBool true] -> needed t () | [VBool false] -> needed f () | _ -> error "Invalid value in activate if condition." end in List.iter (fun id -> Hashtbl.replace env.vars (node^"/"^id) (VCalc (needed t))) vars | AST_automaton(aid, states, vars) -> let asn = match VarMap.find (node^"/"^aid^".state") env.st.save with | VState s -> s | _ -> assert false in let (st, _) = List.find (fun (st, _) -> st.st_name = asn) states in activate_scope env (node, aid^"."^st.st_name^".", st.body); List.iter (fun (c, _, _) -> do_expr c) st.until in List.iter do_eq eqs (* is_scope_active : env -> scope -> bool *) let is_scope_active env (node, prefix, _) = try as_bool (Hashtbl.find env.vars (node^"/"^prefix^"act")) with Not_found -> false (* do_weak_transitions : env -> scope -> unit *) let rec do_weak_transitions env (node, prefix, eqs) = let do_expr e = List.iter (fun (id, eqs, args) -> do_weak_transitions env (node^"/"^id, "", eqs)) (extract_instances env.st.p e) in let do_eq (e, _) = match e with | AST_assign(_, e) -> do_expr e | AST_assume (_, e) | AST_guarantee (_, e) -> do_expr e | AST_activate(t, _) -> let rec do_tree = function | AST_activate_body b -> do_weak_transitions env (node, b.act_id^".", b.body) | AST_activate_if(c, a, b) -> do_expr c; do_tree a; do_tree b in do_tree t | AST_automaton(aid, states, vars) -> let svn = node^"/"^aid^".state" in let stv = VarMap.find svn env.st.save in let new_st = if is_scope_active env (node, prefix, eqs) then begin let asn = match stv with | VState s -> s | _ -> assert false in let (st, _) = List.find (fun (st, _) -> st.st_name = asn) states in try let (_, (next_st,_), rst) = List.find (fun (c, _, _) -> eval_expr env (node, aid^"."^st.st_name^".") c = [VBool true]) st.until in if rst then begin let (st, _) = List.find (fun (st, _) -> st.st_name = next_st) states in reset_scope env (node, aid^"."^next_st^".", st.body) end; VState(next_st) with | _ -> stv end else stv in Hashtbl.replace env.vars svn new_st in List.iter do_eq eqs (* extract_st : env -> state *) let extract_st env = let rec aux (node, prefix, eqs) save = let init = try as_bool (Hashtbl.find env.vars (node^"/"^prefix^"init")) with Not_found -> let pre_init = as_bool (VarMap.find (node^"/"^prefix^"init") env.st.save) in pre_init && (not (is_scope_active env (node, prefix, eqs))) in let save = VarMap.add (node^"/"^prefix^"init") (VBool init) save in let save_expr save e = (* Save pre expressions *) let save = List.fold_left (fun save (id, expr) -> let n = node^"/"^prefix^id in if is_scope_active env (node, prefix, eqs) then VarMap.add n (VPrevious (eval_expr env (node, prefix) expr)) save else try VarMap.add n (VarMap.find n env.st.save) save with Not_found -> save ) save (extract_pre e) in (* Save recursively in sub instances of nodes *) let save = List.fold_left (fun save (n, eqs, _) -> aux (node^"/"^n, "", eqs) save) save (extract_instances env.st.p e) in save in let save_eq save eq = match fst eq with | AST_assign(_, e) | AST_assume(_, e) | AST_guarantee(_, e) -> save_expr save e | AST_automaton(aid, states, _) -> let svn = node^"/"^aid^".state" in let st = Hashtbl.find env.vars svn in let save = VarMap.add (node^"/"^aid^".state") st save in List.fold_left (fun save (st, _) -> let save = List.fold_left (fun save (c, _, _) -> save_expr save c) save st.until in aux (node, aid^"."^st.st_name^".", st.body) save) save states | AST_activate(r, _) -> let rec do_t save = function | AST_activate_if(c, t, f) -> let save = save_expr save c in let save = do_t save t in do_t save f | AST_activate_body b -> aux (node, b.act_id^".", b.body) save in do_t save r in List.fold_left save_eq save eqs in let consts = VarMap.filter (fun k _ -> k.[0] <> '/') env.st.save in { env.st with save = aux env.st.root_scope consts } (* init_state : prog -> id -> state *) let init_state p root = let (n, _) = find_node_decl p root in let root_scope = ("", "", n.body) in let st = { p = p; root_scope = root_scope; save = VarMap.empty; outputs = (List.map (fun (_,(n,_),_) -> n) n.ret); } in let env = { st = st; vars = Hashtbl.create 42 } in (* calculate constants *) List.iter (function | AST_const_decl(d, l) -> let cpath = "cst/" ^ d.c_name in Hashtbl.replace env.vars cpath (VCalc (fun () -> match eval_expr env ("cst", "") d.value with | [v] -> Hashtbl.replace env.vars cpath v | _ -> loc_error l error "Arity error in constant expression.")) | _ -> ()) p; List.iter (function | AST_const_decl(d, l) -> ignore (get_var env "cst" d.c_name) | _ -> ()) p; reset_scope env root_scope; { st with save = Hashtbl.fold VarMap.add env.vars VarMap.empty } (* step : state -> io -> (state * io) *) let step st i = let vars = Hashtbl.create 10 in List.iter (fun (k, v) -> Hashtbl.replace vars ("/"^k) v) i; let env = { st = st; vars = vars } in activate_scope env st.root_scope; if false then Hashtbl.iter (fun k v -> Format.printf "%s : %s@." k (str_repr_of_val v)) env.vars; let out = List.map (fun id -> id, get_var env "" id) st.outputs in do_weak_transitions env st.root_scope; extract_st env, out end