open Lexing open Util type 'a ext = 'a * extent type id = string type typ = | AST_TINT | AST_TBOOL | AST_TREAL type unary_op = | AST_UPLUS | AST_UMINUS type binary_op = (* num * num -> num *) | AST_PLUS | AST_MINUS | AST_MUL | AST_DIV | AST_MOD type binary_rel_op = (* 'a * 'a -> bool *) | AST_EQ | AST_NE (* num * num -> bool *) | AST_LT | AST_LE | AST_GT | AST_GE type bin_bool_op = (* bool * bool -> bool *) | AST_AND | AST_OR type expr = | AST_identifier of id ext | AST_idconst of id ext (* on numerical values *) | AST_int_const of string ext | AST_real_const of string ext | AST_unary of unary_op * (expr ext) | AST_binary of binary_op * (expr ext) * (expr ext) (* on boolean values *) | AST_bool_const of bool | AST_binary_rel of binary_rel_op * (expr ext) * (expr ext) | AST_binary_bool of bin_bool_op * (expr ext) * (expr ext) | AST_not of expr ext (* temporal primitives *) | AST_pre of expr ext * id | AST_arrow of (expr ext) * (expr ext) (* other *) | AST_if of (expr ext) * (expr ext) * (expr ext) | AST_instance of (id ext) * (expr ext list) * id type var_def = bool * (id ext) * typ type automaton = id * state ext list * id list and state = { initial : bool; name : id; locals : var_def list; body : eqn ext list; until : transition list; } and transition = (expr ext) * (id ext) * bool (* bool : does it reset ? *) and activate_block = { id : id; locals : var_def list; body : eqn ext list; } and activate_if = | AST_activate_body of activate_block | AST_activate_if of expr ext * activate_if * activate_if and activate = activate_if * id list and eqn = | AST_assign of (id ext list) * (expr ext) | AST_guarantee of (id ext) * (expr ext) | AST_assume of (id ext) * (expr ext) | AST_automaton of automaton | AST_activate of activate type node_decl = { name : id; args : var_def list; ret : var_def list; var : var_def list; body : eqn ext list; } type const_decl = { name : id; typ : typ; value : expr ext; } type toplevel = | AST_node_decl of node_decl ext | AST_const_decl of const_decl ext type prog = toplevel list