open Ast open Util open Ast_util open Formula open Typing open Interpret (* used for constant evaluation ! *) (* Transform SCADE program to logical formula. *) (* node * prefix * equations *) type scope = id * id * eqn ext list type transform_data = { rp : rooted_prog; consts : I.value VarMap.t; (* future : the automata state *) } (* Numerical types / Enumerated types *) type ne_expr = | EE of enum_expr | NE of num_expr (* f_of_neexpr : transform_data -> (string, string) -> (ne_expr list -> bool_expr) -> expr -> bool_expr *) let rec f_of_neexpr td (node, prefix) where expr = let sub = f_of_neexpr td (node, prefix) in let le = loc_error (snd expr) in match fst expr with (* ident *) | AST_identifier(id, _) -> let qid = node^"/"^id in begin match type_var td.rp node id with | TInt | TReal -> where [NE (NIdent qid)] | TEnum _ -> where [EE (EIdent qid)] end | AST_idconst(id, _) -> begin let x = VarMap.find ("cst/"^id) td.consts in try where [NE (NIntConst (I.as_int x))] with _ -> try where [NE (NRealConst (I.as_real x))] with _ -> try where [EE (EItem (if I.as_bool x then bool_true else bool_false))] with _ -> le error "Invalid data for supposedly numerical/boolean constant." end (* numerical *) | AST_int_const(i, _) -> where [NE(NIntConst(int_of_string i))] | AST_real_const(r, _) -> where [NE(NRealConst(float_of_string r))] | AST_bool_const b -> where [EE(EItem (if b then bool_true else bool_false))] | AST_unary(op, e) -> sub (function | [NE x] -> where [NE(NUnary(op, x))] | _ -> le invalid_arity "Unary operator") e | AST_binary(op, a, b) -> sub (function | [NE x] -> sub (function | [NE y] -> where [NE(NBinary(op, x, y))] | _ -> le invalid_arity "binary operator") b | _ -> le invalid_arity "binary operator") a (* temporal *) | AST_pre(expr, id) -> let typ = type_expr td.rp node expr in where (List.mapi (fun i t -> let x = id^"."^(string_of_int i) in match t with | TInt | TReal -> NE(NIdent x) | TEnum _ -> EE(EIdent x)) typ) | AST_arrow(a, b) -> if List.mem (node^"/") td.rp.init_scope then f_or (f_and (f_e_eq (EIdent (node^"/"^prefix^"init")) (EItem bool_true)) (sub where a)) (f_and (f_e_eq (EIdent (node^"/"^prefix^"init")) (EItem bool_false)) (sub where b)) else f_or (f_and (BRel(AST_EQ, NIdent(node^"/"^prefix^"time"), NIntConst 0)) (sub where a)) (f_and (BRel(AST_GE, NIdent(node^"/"^prefix^"time"), NIntConst 1)) (sub where b)) (* other *) | AST_if(c, a, b) -> f_or (f_and (f_of_expr td (node, prefix) c) (sub where a)) (f_and (BNot(f_of_expr td (node, prefix) c)) (sub where b)) | AST_instance ((f, _), args, nid) -> let (n, _) = find_node_decl td.rp.p f in where (List.map (fun (_, id, t) -> let x = node^"/"^nid^"/"^id in match t with | AST_TINT | AST_TREAL -> NE(NIdent x) | _ -> EE(EIdent x)) n.ret) | AST_tuple l -> let rec rl l x = match l with | [] -> where x | p::q -> sub (fun y -> rl q (x@y)) p in rl l [] (* boolean values treated as enumerated types *) | _ when type_expr td.rp node expr = [bool_type] -> f_or (f_and (f_of_expr td (node, prefix) expr) (where [EE (EItem bool_true)])) (f_and (f_of_expr td (node, prefix) (AST_not(expr), snd expr)) (where [EE (EItem bool_false)])) | _ -> le type_error "Expected numerical/enumerated value" (* f_of_expr : transform_data -> (string, string) -> expr -> bool_expr f_of_bexpr : transform_data -> (string, string) -> (bool_expr -> bool_expr) -> expr -> bool_expr *) and f_of_bexpr td (node, prefix) where expr = let sub = f_of_bexpr td (node, prefix) in match fst expr with | AST_bool_const b -> where (BConst b) | AST_binary_bool(AST_AND, a, b) -> f_and (sub where a) (sub where b) | AST_binary_bool(AST_OR, a, b) -> f_or (sub where a) (sub where b) | AST_not(a) -> BNot(sub where a) | AST_binary_rel(rel, a, b) -> where (f_of_neexpr td (node, prefix) (function | [NE x; NE y] -> BRel(rel, x, y) | [EE x; EE y] -> let eop = match rel with | AST_EQ -> E_EQ | AST_NE -> E_NE | _ -> type_error "Invalid operator on enumerated values." in BEnumCons(eop, x, y) | _ -> invalid_arity "Binary operator") (AST_tuple [a; b], snd expr)) (* Temporal *) | AST_arrow(a, b) -> f_or (f_and (BRel(AST_EQ, NIdent(node^"/"^prefix^"time"), NIntConst 0)) (sub where a)) (f_and (BRel(AST_GE, NIdent(node^"/"^prefix^"time"), NIntConst 1)) (sub where b)) (* Enumerations... *) | _ when type_expr td.rp node expr = [bool_type] -> let ff = function | [EE x] -> f_or (f_and (f_e_eq x (EItem bool_true)) (where (BConst true))) (f_and (f_e_eq x (EItem bool_false)) (where (BConst false))) | _ -> assert false in f_of_neexpr td (node, prefix) ff expr | _ -> type_error "Expected boolean value." and f_of_expr td (node, prefix) expr = f_of_bexpr td (node, prefix) (fun x -> x) expr (* Translate program into one big formula *) let rec f_of_scope active td (node, prefix, eqs) assume_guarantees = let expr_eq e = let instance_eq (_, id, eqs, args) = let eq = f_of_scope active td (node^"/"^id, "", eqs) assume_guarantees in if active then let arg_eq ((_,argname,_), expr) = f_of_neexpr td (node, prefix) (function | [NE v] -> BRel(AST_EQ, NIdent(node^"/"^id^"/"^argname), v) | [EE v] -> f_e_eq (EIdent(node^"/"^id^"/"^argname)) v | _ -> invalid_arity "in argument") expr in f_and eq (f_and_list (List.map arg_eq args)) else eq in let eq_i = f_and_list (List.map instance_eq (extract_instances td.rp.p e)) in let pre_expr (id, expr) = if active then f_of_neexpr td (node, prefix) (fun elist -> list_fold_op f_and (List.mapi (fun i v -> let x = ("N"^id^"."^(string_of_int i)) in match v with | NE v -> BRel(AST_EQ, NIdent x, v) | EE v -> f_e_eq (EIdent x) v) elist)) expr else let typ = type_expr td.rp node expr in list_fold_op f_and (List.mapi (fun i t -> let x = string_of_int i in match t with | TInt | TReal -> BRel(AST_EQ, NIdent("N"^id^"."^x), NIdent (id^"."^x)) | TEnum _ -> f_e_eq (EIdent("N"^id^"."^x)) (EIdent (id^"."^x))) typ) in let eq_p = f_and_list (List.map pre_expr (extract_pre e)) in f_and eq_i eq_p in let do_eq eq = match fst eq with | AST_assign(ids, e) -> let assign_eq = if active then let apply_f vs = let rels = List.map2 (fun (id, _) -> function | NE v -> BRel(AST_EQ, NIdent (node^"/"^id), v) | EE v -> f_e_eq (EIdent (node^"/"^id)) v) ids vs in f_and_list rels in f_of_neexpr td (node, prefix) apply_f e else BConst true in f_and (expr_eq e) assign_eq | AST_assume (_, e) -> let assume_eq = if active then f_of_expr td (node, prefix) e else BConst true in f_and (expr_eq e) assume_eq | AST_guarantee (_, e) -> let guarantee_eq = if active && assume_guarantees then f_of_expr td (node, prefix) e else BConst true in f_and (expr_eq e) guarantee_eq | AST_activate (b, _) -> let rec cond_eq = function | AST_activate_body b -> BConst true | AST_activate_if(c, a, b) -> f_and (expr_eq c) (f_and (cond_eq a) (cond_eq b)) in let rec do_tree_act = function | AST_activate_body b -> f_of_scope true td (node, b.act_id^".", b.body) assume_guarantees | AST_activate_if(c, a, b) -> f_or (f_and (f_of_expr td (node, prefix) c) (f_and (do_tree_act a) (do_tree_inact b))) (f_and (BNot(f_of_expr td (node, prefix) c)) (f_and (do_tree_act b) (do_tree_inact a))) and do_tree_inact = function | AST_activate_body b -> f_of_scope false td (node, b.act_id^".", b.body) assume_guarantees | AST_activate_if(_, a, b) -> f_and (do_tree_inact a) (do_tree_inact b) in f_and (cond_eq b) (if active then do_tree_act b else do_tree_inact b) | AST_automaton (aid, states, _) -> let stv = EIdent (node^"/"^aid^".state") in let nstv = EIdent ("N"^node^"/"^aid^".state") in let st_eq_inact (st, _) = f_and (f_of_scope false td (node, aid^"."^st.st_name^".", st.body) assume_guarantees) (f_and_list (List.map (fun (c, _, _) -> expr_eq c) st.until)) in if active then let st_eq_act (st, l) = let act_eq = let st_eq = f_of_scope true td (node, aid^"."^st.st_name^".", st.body) assume_guarantees in let rec aux = function | [] -> BEnumCons(E_EQ, nstv, EItem st.st_name) | (c, (target, l), rst)::q -> if rst then loc_error l error "Resetting transitions not supported."; f_or (f_and (f_of_expr td (node, prefix) c) (BEnumCons(E_EQ, nstv, EItem target))) (f_and (BNot (f_of_expr td (node, prefix) c)) (aux q)) in f_and st_eq (aux st.until) in f_or (f_and (BEnumCons(E_EQ, stv, EItem st.st_name)) act_eq) (f_and (BEnumCons(E_NE, stv, EItem st.st_name)) (st_eq_inact (st, l))) in f_and_list (List.map st_eq_act states) else f_and_list (List.map st_eq_inact states) in let time_incr_eq = if active then f_and (if not (List.mem (node^"/") td.rp.no_time_scope) then BRel(AST_EQ, NIdent("N"^node^"/"^prefix^"time"), NBinary(AST_PLUS, NIntConst 1, NIdent(node^"/"^prefix^"time"))) else BConst true) (f_and (if List.mem (node^"/") td.rp.act_scope then f_e_eq (EIdent(node^"/"^prefix^"act")) (EItem bool_true) else BConst true) (if List.mem (node^"/") td.rp.init_scope then f_e_eq (EIdent("N"^node^"/"^prefix^"init")) (EItem bool_false) else BConst true)) else f_and (if not (List.mem (node^"/") td.rp.no_time_scope) then BRel(AST_EQ, NIdent("N"^node^"/"^prefix^"time"), NIdent(node^"/"^prefix^"time")) else BConst true) (f_and (if List.mem (node^"/") td.rp.act_scope then f_e_eq (EIdent(node^"/"^prefix^"act")) (EItem bool_false) else BConst true) (if List.mem (node^"/") td.rp.init_scope then f_e_eq (EIdent("N"^node^"/"^prefix^"init")) (EIdent (node^"/"^prefix^"init")) else BConst true)) in List.fold_left f_and time_incr_eq (List.map do_eq eqs) and f_of_prog rp assume_guarantees = let td = { rp = rp; consts = I.consts rp; } in f_of_scope true td td.rp.root_scope assume_guarantees (* Translate init state into a formula *) let rec init_f_of_scope rp (node, prefix, eqs) = let expr_eq e = let instance_eq (_, id, eqs, args) = init_f_of_scope rp (node^"/"^id, "", eqs) in List.fold_left (fun x i -> f_and (instance_eq i) x) (BConst true) (extract_instances rp.p e) in let do_eq eq = match fst eq with | AST_assign(_, e) | AST_assume(_, e) | AST_guarantee(_, e) -> expr_eq e | AST_activate (b, _) -> let rec cond_eq = function | AST_activate_body b -> init_f_of_scope rp (node, b.act_id^".", b.body) | AST_activate_if(c, a, b) -> f_and (expr_eq c) (f_and (cond_eq a) (cond_eq b)) in cond_eq b | AST_automaton (aid, states, _) -> let (st, _) = List.find (fun (st, _) -> st.initial) states in let init_eq = BEnumCons(E_EQ, EIdent(node^"/"^aid^".state"), EItem st.st_name) in let state_eq (st, _) = let sc_f = init_f_of_scope rp (node, aid^"."^st.st_name^".", st.body) in List.fold_left (fun f (c, _, _) -> f_and f (expr_eq c)) sc_f st.until in List.fold_left f_and init_eq (List.map state_eq states) in let time_eq = f_and (if not (List.mem (node^"/") rp.no_time_scope) then BRel(AST_EQ, NIdent(node^"/"^prefix^"time"), NIntConst 0) else BConst true) (if List.mem (node^"/") rp.init_scope then f_e_eq (EIdent(node^"/"^prefix^"init")) (EItem bool_true) else BConst true) in List.fold_left f_and time_eq (List.map do_eq eqs) and init_f_of_prog rp = init_f_of_scope rp rp.root_scope (* Get expressions for guarantee violation *) let rec g_of_scope td (node, prefix, eqs) cond = let expr_g e = let instance_g (_, id, eqs, args) = g_of_scope td (node^"/"^id, "", eqs) cond in List.fold_left (fun x i -> (instance_g i) @ x) [] (extract_instances td.rp.p e) in let do_eq eq = match fst eq with | AST_assign(_, e) | AST_assume(_, e) -> expr_g e | AST_guarantee((id, _), e) -> (id, f_and cond (f_of_expr td (node, prefix) (AST_not(e), snd e))) :: (expr_g e) | AST_activate (b, _) -> let rec cond_g cond = function | AST_activate_body b -> g_of_scope td (node, b.act_id^".", b.body) cond | AST_activate_if(c, a, b) -> (cond_g (f_and cond (f_of_expr td (node, prefix) c)) a) @ (cond_g (f_and cond (f_of_expr td (node, prefix) (AST_not(c), snd c))) b) @ (expr_g c) in cond_g cond b | AST_automaton (aid, states, _) -> let st_g (st, _) = g_of_scope td (node, aid^"."^st.st_name^".", st.body) (f_and cond (BEnumCons(E_EQ, EIdent(node^"/"^aid^".state"), EItem st.st_name))) in List.flatten (List.map st_g states) in List.flatten (List.map do_eq eqs) and guarantees_of_prog rp = let td = { rp = rp; consts = I.consts rp; } in g_of_scope td rp.root_scope (BConst true)