open Formula open Util open Ast open Value_domain open Num_domain (* Implementation of a nonrelationnal domain for numerical values. Restricted implementation, only support integers. *) module ND (V : VALUE_DOMAIN) : NUMERICAL_ENVIRONMENT_DOMAIN = struct type env = V.t VarMap.t type t = Env of env | Bot type itv = Value_domain.itv let top vars = Env (List.fold_left (fun e (v, _) -> VarMap.add v V.top e) VarMap.empty vars) let bottom _ = Bot let get_var env id = try VarMap.find id env with Not_found -> V.top (* utilities *) let rec eval env = function | NIdent id -> get_var env id | NIntConst i -> V.const i | NRealConst f -> V.const (int_of_float f) (* TODO floats *) | NUnary (AST_UPLUS, e, _) -> eval env e | NUnary (AST_UMINUS, e, _) -> V.neg (eval env e) | NBinary (op, e1, e2, _) -> let f = match op with | AST_PLUS -> V.add | AST_MINUS -> V.sub | AST_MUL -> V.mul | AST_DIV -> V.div | AST_MOD -> V.rem in f (eval env e1) (eval env e2) let strict env = (* env -> t *) if VarMap.exists (fun _ x -> x = V.bottom) env then Bot else Env env let strict_apply f = function (* (env -> t) -> t -> t *) | Bot -> Bot | Env e -> match f e with | Bot -> Bot | Env e -> strict e (* implementation *) let is_bot env = match env with | Bot -> true | Env env -> strict env = Bot let is_top env = match env with | Bot -> false | Env e -> VarMap.for_all (fun _ v -> v = V.top) e let forgetvar x id = strict_apply (fun y -> Env (VarMap.add id V.top y)) x let vars env = match env with | Bot -> [] | Env env -> List.map (fun (k, _) -> (k, false)) (VarMap.bindings env) let vbottom _ = Bot let project x id = match x with | Bot -> Value_domain.Bot | Env env -> V.to_itv (get_var env id) (* Set-theoretic operations *) let f_in_merge f _ a b = match a, b with | Some a, None -> Some a | None, Some b -> Some b | Some a, Some b -> Some (f a b) | _ -> assert false let join a b = match a, b with | Bot, x | x, Bot -> x | Env m, Env n -> strict (VarMap.merge (f_in_merge V.join) m n) let meet a b = match a, b with | Bot, _ | _, Bot -> Bot | Env m, Env n -> strict (VarMap.merge (f_in_merge V.meet) m n) let widen a b = match a, b with | Bot, x | x, Bot -> x | Env m, Env n -> strict (VarMap.merge (f_in_merge V.widen) m n) (* Inclusion and equality *) let subset a b = match a, b with | Bot, x -> true | Env _, Bot -> false | Env m, Env n -> VarMap.for_all (fun id vn -> try let vm = VarMap.find id m in V.subset vm vn with Not_found -> vn = V.top) n let eq a b = match a, b with | Bot, Bot -> true | Env m, Env n -> VarMap.for_all2o (fun _ v -> v = V.top) (fun _ v -> v = V.top) (fun _ a b -> a = b) m n | _ -> false (* Apply some formula to the environment *) let apply_cons env (expr, sign) = let inv_op = function | AST_LT -> AST_GT | AST_GT -> AST_LT | AST_LE -> AST_GE | AST_GE -> AST_LE | x -> x in let rec extract_var (lhs, op, rhs) = match lhs with | NIdent i -> [i, op, rhs] | NIntConst _ | NRealConst _ -> [] | NUnary(AST_UPLUS, x, r) -> extract_var (x, op, rhs) | NUnary(AST_UMINUS, x, r) -> extract_var (x, inv_op op, NUnary(AST_UMINUS, x, r)) | NBinary(AST_PLUS, a, b, r) -> extract_var (a, op, NBinary(AST_MINUS, rhs, b, r)) @ extract_var (b, op, NBinary(AST_MINUS, rhs, a, r)) | NBinary(AST_MINUS, a, b, r) -> extract_var (a, op, NBinary(AST_PLUS, rhs, b, r)) @ extract_var (b, inv_op op, NBinary(AST_MINUS, a, rhs, r)) | NBinary(AST_MUL, a, b, r) when r -> extract_var (a, op, NBinary(AST_DIV, rhs, b, r)) @ extract_var (b, op, NBinary(AST_DIV, rhs, a, r)) | NBinary(AST_DIV, a, b, r) when r -> extract_var (a, op, NBinary(AST_MUL, rhs, b, r)) @ extract_var (b, inv_op op, NBinary(AST_DIV, a, rhs, r)) | NBinary _ -> [] in let zop = match sign with | CONS_EQ -> AST_EQ | CONS_NE -> AST_NE | CONS_GT -> AST_GT | CONS_GE -> AST_GE in let restrict_var env (i, op, expr) = strict_apply (fun env -> let v1, v2 = get_var env i, eval env expr in let v1' = match op with | AST_EQ -> V.meet v1 v2 | AST_NE -> v1 | AST_LE -> let u, _ = V.leq v1 v2 in u | AST_GE -> let _, v = V.leq v2 v1 in v | AST_LT -> let u, _ = V.leq v1 (V.sub v2 (V.const 1)) in u | AST_GT -> let _, v = V.leq (V.add v2 (V.const 1)) v1 in v in Env (VarMap.add i v1' env)) env in List.fold_left restrict_var env (extract_var (expr, zop, NIntConst 0)) let apply_cl x cl = let f x = List.fold_left apply_cons x cl in fix eq f x (* Assignment *) let assign x exprs = let aux env = let vars = List.map (fun (id, v) -> (id, eval env v)) exprs in let env2 = List.fold_left (fun e (id, v) -> VarMap.add id v e) env vars in Env env2 in strict_apply aux x (* pretty-printing *) let print_vars fmt env ids = match env with | Bot -> Format.fprintf fmt "⊥" | Env env -> let l = List.map (fun id -> (get_var env id, id)) ids in let s = List.sort Pervasives.compare l in let rec bl = function | [] -> [] | (v, id)::q when v <> V.top -> begin match bl q with | (vv, ids)::q when vv = v -> (v, id::ids)::q | r -> (v, [id])::r end | _::q -> bl q in let sbl = bl s in if sbl = [] then Format.fprintf fmt "⊤" else begin Format.fprintf fmt "@[{ "; List.iteri (fun j (v, ids) -> if j > 0 then Format.fprintf fmt "@ "; Format.fprintf fmt "@["; List.iteri (fun i id -> if i > 0 then Format.fprintf fmt ",@ "; Format.fprintf fmt "%a" Formula_printer.print_id id) ids; match V.as_const v with | Some i -> Format.fprintf fmt " = %d@]" i | _ -> Format.fprintf fmt " ∊ %s@]" (V.to_string v)) sbl; Format.fprintf fmt " }@]" end let print fmt x = print_vars fmt x (List.map fst (vars x)) let print_itv fmt x = Format.fprintf fmt "%s" (string_of_itv x) end