open Formula open Ast open Util open Environment_domain open Apron module D : ENVIRONMENT_DOMAIN = struct (* manager *) type man = Polka.loose Polka.t let manager = Polka.manager_alloc_loose () type itv = Interval.t (* abstract elements *) type t = man Abstract1.t (* direct translation of numerical expressions into Apron tree expressions *) (* TODO : some variables have type real and not int... *) let rec texpr_of_nexpr = function | NIdent id -> Texpr1.Var (Var.of_string id) | NIntConst i -> Texpr1.Cst (Coeff.s_of_mpqf (Mpqf.of_int i)) | NRealConst r -> Texpr1.Cst (Coeff.s_of_mpqf (Mpqf.of_float r)) | NUnary(AST_UPLUS, e) -> texpr_of_nexpr e | NUnary(AST_UMINUS, e) -> (* APRON bug ? Unary negate seems to not work correctly... *) Texpr1.Binop( Texpr1.Sub, Texpr1.Cst(Coeff.s_of_mpqf (Mpqf.of_string "0")), (texpr_of_nexpr e), Texpr1.Int, Texpr1.Zero) | NBinary(op, e1, e2) -> let f = match op with | AST_PLUS -> Texpr1.Add | AST_MINUS -> Texpr1.Sub | AST_MUL -> Texpr1.Mul | AST_DIV -> Texpr1.Div | AST_MOD -> Texpr1.Mod in Texpr1.Binop( f, (texpr_of_nexpr e1), (texpr_of_nexpr e2), Texpr1.Int, Texpr1.Zero) (* direct translation of constraints into Apron constraints *) let tcons_of_cons env (eq, op) = let op = match op with | CONS_EQ -> Tcons1.EQ | CONS_NE -> Tcons1.DISEQ | CONS_GT -> Tcons1.SUP | CONS_GE -> Tcons1.SUPEQ in Tcons1.make (Texpr1.of_expr env (texpr_of_nexpr eq)) op (* implementation *) let init = Abstract1.top manager (Environment.make [||] [||]) let bottom = Abstract1.bottom manager (Environment.make [||] [||]) let is_bot = Abstract1.is_bottom manager let addvar x id isfloat = let env = Abstract1.env x in let env2 = if isfloat then Environment.add env [||] [| Var.of_string id |] else Environment.add env [| Var.of_string id |] [||] in Abstract1.change_environment manager x env2 false let forgetvar x id = let v = [| Var.of_string id |] in Abstract1.forget_array manager x v false let rmvar x id = let v = [| Var.of_string id |] in let env = Abstract1.env x in let env2 = Environment.remove env v in let y = Abstract1.forget_array manager x v false in Abstract1.change_environment manager y env2 false let vars x = let (ivt, fvt) = Environment.vars (Abstract1.env x) in let ivl = List.map Var.to_string (Array.to_list ivt) in let fvl = List.map Var.to_string (Array.to_list fvt) in (List.map (fun x -> x, false) ivl) @ (List.map (fun x -> x, true) fvl) let vbottom x = Abstract1.bottom manager (Abstract1.env x) let var_itv x id = Abstract1.bound_variable manager x (Var.of_string id) (* Apply some formula to the environment *) let rec apply_cl x (cons, rest) = let env = Abstract1.env x in let tca = Array.of_list (List.map (tcons_of_cons env) cons) in let ar = Tcons1.array_make env (Array.length tca) in Array.iteri (Tcons1.array_set ar) tca; let y = Abstract1.meet_tcons_array manager x ar in apply_cl_r y rest and apply_cl_r x = function | CLTrue -> x | CLFalse -> vbottom x | CLAnd(a, b) -> let y = apply_cl_r x a in apply_cl_r y b | CLOr(a, b) -> let y = apply_cl x a in let z = apply_cl x b in Abstract1.join manager y z let apply_f x f = apply_cl x (conslist_of_f f) let assign x eqs = let env = Abstract1.env x in let vars = Array.of_list (List.map (fun (id, _) -> Var.of_string id) eqs) in let vals = Array.of_list (List.map (fun (_, v) -> Texpr1.of_expr env (texpr_of_nexpr v)) eqs) in Abstract1.assign_texpr_array manager x vars vals None (* Ensemblistic operations *) let join = Abstract1.join manager let meet = Abstract1.meet manager let widen = Abstract1.widening manager let subset = Abstract1.is_leq manager let eq = Abstract1.is_eq manager (* Pretty-printing *) let print_all fmt x = Abstract1.minimize manager x; Abstract1.print fmt x; Format.fprintf fmt "@?" let print_vars fmt x idl = let prevars = vars x in let rm_vars_l = List.filter (fun (id, _) -> not (List.mem id idl)) prevars in let rm_vars = Array.of_list (List.map (fun (id, _) -> Var.of_string id) rm_vars_l) in let xx = Abstract1.forget_array manager x rm_vars false in print_all fmt xx let print_itv = Interval.print end