open Netlist_gen let zeroes n = const (String.make n '0') let one n = const "1" ++ zeroes (n-1) let two n = const "01" ++ zeroes (n-2) let rec rep n k = if n = 1 then k else let s = rep (n/2) k in if n mod 2 = 0 then s ++ s else s ++ s ++ k let rec eq_c n v c = (* v is a value, c is a constant *) if n = 1 then if c = 1 then v else not v else if c mod 2 = 1 then mux (v ** 0) (const "0") (eq_c (n-1) (v % (1, n-1)) (c/2)) else mux (v ** 0) (eq_c (n-1) (v % (1, n-1)) (c/2)) (const "0") let rec all1 n x = if n = 1 then x else (x ** 0) ^& (all1 (n-1) (x % (1, n-1))) let rec nonnull n a = if n = 1 then a else (a ** 0) ^| (nonnull (n-1) (a % (1, n-1))) let rec sign_extend n_a n_dest a = a ++ rep (n_dest - n_a) (a ** (n_a - 1)) (* Arithmetic operations *) let fulladder a b c = let s = a ^^ b ^^ c in let r = (a ^& b) ^| ((a ^^ b) ^& c) in s, r let rec nadder_with_carry n a b c_in = if n = 1 then fulladder a b c_in else let s_n, c_n1 = fulladder (a ** 0) (b ** 0) c_in in let s_n1, c_out = nadder_with_carry (n-1) (a % (1, n-1)) (b % (1, n-1)) c_n1 in s_n ++ s_n1, c_out let nadder n a b = let a, b = nadder_with_carry n a b (const "0") in b ^. a let neg n a = nadder n (not a) (one n) let rec nsubber n a b = let r, c = nadder_with_carry n a (not b) (const "1") in c ^. r (* Comparisons *) let rec eq_n n a b = all1 n (not (a ^^ b)) let rec ne_n n a b = nonnull n (a ^^ b) let rec lt_n n a b = const "0" (* TODO : less than *) let rec ult_n n a b = const "0" (* TODO : less than, unsigned *) let rec le_n n a b = const "0" (* TODO : less than or equal *) let rec ule_n n a b = if n = 0 then const "1" else mux ((eq_c 1 (a ** (n-1)) 1) ^& (eq_c 1 (b ** (n-1)) 0)) (mux ((eq_c 1 (a ** (n-1)) 0) ^& (eq_c 1 (b ** (n-1)) 1)) (ule_n (n-1) (a % (0, n-2)) (b % (0, n-2))) (const "1") ) (const "0") (* Some operations on Redundant Binary Representation Each binary digit is encoded on 2 bits A n-digits number in RBR is written [a_0, a'_0, a_1, a'_1, ..., a_(n-1), a'_(n-1)] *) (* [a] and [b] are encoded on 2n bits [c_in] and [c_out] on 2 bits *) let rec rbr_nadder_with_carry n a b c_in = if n = 0 then (zeroes 0), c_in else let fa1s, fa1r = fulladder (a ** 1) (b ** 0) (b ** 1) in let fa2s, fa2r = fulladder (c_in ** 1) (a ** 0) fa1s in let rec_s, rec_c = rbr_nadder_with_carry (n - 1) (a % (2, 2*n - 1)) (b % (2, 2*n - 1)) (fa1r ++ fa2r) in (c_in ** 0) ++ fa2s ++ rec_s, rec_c let rbr_nadder n a b = let s, c = rbr_nadder_with_carry n a b (zeroes 2) in c ^. s let bin_of_rbr n a c = (* Split even and odd bits *) let rec split_bits n a = if n = 0 then (zeroes 0, zeroes 0) else let even, odd = split_bits (n-1) (a % (2, 2*n - 1)) in (a ** 0) ++ even, (a ** 1) ++ odd in let a_even, a_odd = split_bits n a in nadder n a_even a_odd (* TODO : move to utils module *) let rec range a b = if a > b then [] else a :: (range (a+1) b) (* Sépare en deux listes de même taille une liste de taille paire *) let rec split_list = function | [] -> [], [] | [_] -> assert false | x::y::tl -> let a, b = split_list tl in x::a, y::b (* Décalage de 1 bit vers les poids forts (multiplication par deux) *) let shiftl1 n a = const "0" ++ (a % (0, n-2)) let nmulu n a b start_signal = let next_busy, set_next_busy = loop 1 in let busy = start_signal ^| (reg 1 next_busy) in (* 'mule' est intialisé à b au début de la multiplication, puis à chaque cycle est shifté de 1 bit vers la droite (donc perd le bit de poid faible) *) let mule, set_mule = loop n in let mule = set_mule (mux start_signal (((reg n mule) % (1, n-1)) ++ const "0") b) in (* 'adde' est initialisé à a étendu sur 32 bits au début de la multiplication, puis à chaque cycle est shifté de 1 bit vers la gauche (donc multiplié par 2) *) let adde, set_adde = loop (2*n) in let adde = set_adde (mux start_signal (shiftl1 (2*n) (reg (2*n) adde)) (a ++ (zeroes n))) in (* 'res' est un accumulateur qui contient le résultat que l'on calcule, il est initialisé à 0 au début de la multiplication, et à chaque cycle si mule[0] est non nul, on lui rajoute adde (c'est correct) *) let res, set_res = loop (2*n) in let t_res = mux start_signal (reg (2*n) res) (zeroes (2*n)) in let res = set_res (mux (mule ** 0) t_res (nadder (2*n) adde t_res)) in let work_remains = nonnull (n - 1) (mule % (1, n-1)) in let finished = set_next_busy (busy ^& work_remains) ^. (not work_remains) ^& busy in res % (0, n-1), res % (n, 2*n-1), finished let rec ndivu n a b start_signal = let next_busy, set_next_busy = loop 1 in let busy = start_signal ^| (reg 1 next_busy) in let dd, set_dd = loop n in (* dividende *) let q , set_q = loop n in (* quotient *) let r , set_r = loop n in (* reste *) (* L'algorithme doit se poursuivre sur n cycles exactement. c est une constante sur n bits, composée uniquement de 1, qui est décalée à chaque étape, si bien que le calcul est terminé quand c vaut 0 *) let c , set_c = loop n in let c = set_c ( mux start_signal (shiftl1 n (reg n c)) ((const "0") ++ (rep (n-1) (const "1"))) ) in (* Initialisation de q et r *) let q = mux start_signal (reg n q) (zeroes n) in let r = mux start_signal (reg n r) (zeroes n) in (* A l'itération i (i = 0 ... n - 1) Le bit de poids fort de [dd] correspond au bit (n-i-1) du dividende original *) let dd = set_dd (mux start_signal (shiftl1 n (reg n dd)) a) in (* On abaisse le bit (n-i-1) du dividende *) let r = (dd ** (n-1)) ++ (r % (0, n-2)) in (* Si r >= d alors r := r - d et q(n-i-1) := 1 *) let rq = mux (ule_n n b r) (r ++ ((const "0") ++ (q % (0, n-2)))) ((nsubber n r b) ++ ((const "1") ++ (q % (0, n-2)))) in let r = set_r (rq % (0, n-1)) in let q = set_q (rq % (n, 2*n-1)) in let work_remains = nonnull n c in let finished = set_next_busy (busy ^& work_remains) ^. (not work_remains) ^& busy in dd ^. c ^. q, r, finished (* zeroes (n-3) ++ const "110", zeroes (n-3) ++ const "110", start_signal *) (* TODO : unsigned division, returns quotient and remainder *) let rec nmul n a b start_signal = zeroes (n-3) ++ const "101", zeroes (n-3) ++ const "101", start_signal (* TODO : signed multiplication ; returns low part and high part *) let rec ndiv n a b start_signal = zeroes (n - 3) ++ const "011", zeroes (n - 3) ++ const "011", start_signal (* TODO : signed division *) (* Shifts *) let npshift_signed n p a b = a (* TODO (here b is a signed integer on p bits) *) let op_lsl n a b = a (* TODO (b is unsigned, same size n) *) let op_lsr n a b = a (* TODO (b is unsigned, same size n) *) let op_asr n a b = a (* TODO (b unsigned size n) *) (* Big pieces *) let alu_comparer n f0 f a b = (* f0 f action -- - ------ 0 0 equal 0 1 not equal 0 2 equal 0 3 not equal 1 0 lt 1 1 le 1 2 lt unsigned 1 3 le unsigned *) let eq_a_b = eq_n n a b in let eq_ne = mux (f ** 0) (eq_a_b) (not eq_a_b) in let lte_signed = mux (f ** 0) (lt_n n a b) (le_n n a b) in let lte_unsigned = mux (f ** 0) (ult_n n a b) (ule_n n a b) in let lte = mux (f ** 1) lte_signed lte_unsigned in mux f0 eq_ne lte let alu_arith f0 f a b start_signal = (* See table for ALU below *) let add = nadder 16 a b in let sub = nsubber 16 a b in let mul, mul2, mul_end_signal = nmul 16 a b start_signal in let div, div2, div_end_signal = ndiv 16 a b start_signal in let mulu, mulu2, mulu_end_signal = nmulu 16 a b start_signal in let divu, divu2, divu_end_signal = ndivu 16 a b start_signal in let q00 = mux (f ** 0) add sub in let q01 = mux (f ** 0) mul div in let q03 = mux (f ** 0) mulu divu in let q10 = mux (f ** 1) q00 q01 in let q11 = mux (f ** 1) q00 q03 in let q = mux f0 q10 q11 in let r01 = mux (f ** 0) mul2 div2 in let r03 = mux (f ** 0) mulu2 divu2 in let r10 = mux (f ** 1) (zeroes 16) r01 in let r11 = mux (f ** 1) (zeroes 16) r03 in let r = mux f0 r10 r11 in let s01 = mux (f ** 0) mul_end_signal div_end_signal in let s03 = mux (f ** 0) mulu_end_signal divu_end_signal in let s10 = mux (f ** 1) start_signal s01 in let s11 = mux (f ** 1) start_signal s03 in let end_signal = mux f0 s10 s11 in q, r, end_signal let alu_logic f a b = (* See table for ALU below *) let q0 = mux (f ** 0) (a ^| b) (a ^& b) in let q1 = mux (f ** 0) (a ^^ b) (not (a ^| b)) in mux (f ** 1) q0 q1 let alu_shifts f a b = (* See table for ALU below *) let q1 = mux (f ** 0) (op_lsr 16 a b) (op_asr 16 a b) in mux (f ** 1) (op_lsl 16 a b) q1 let alu f1 f0 f a b start_signal = (* f1 f0 f action -- -- - ------ 0 0 0 add 0 0 1 sub 0 0 2 mul 0 0 3 div 0 1 0 addu 0 1 1 subu 0 1 2 mulu 0 1 3 divu 1 0 0 or 1 0 1 and 1 0 2 xor 1 0 3 nor 1 1 0 lsl 1 1 1 lsl 1 1 2 lsr 1 1 3 asr *) let arith, arith_r, arith_end_signal = alu_arith f0 f a b start_signal in let logic = alu_logic f a b in let shifts = alu_shifts f a b in let q0 = mux f0 logic shifts in let s = mux f1 arith q0 in let r = mux f1 arith_r (zeroes 16) in let end_signal = mux f1 arith_end_signal start_signal in s, r, end_signal