open Netlist_gen let rec rep n k = if n = 1 then k else let s = rep (n/2) k in if n mod 2 = 0 then s ++ s else s ++ s ++ k let rec eq_c n v c = (* v is a value, c is a constant *) if n = 1 then if c = 1 then v else not v else (eq_c 1 (v ** 0) (c mod 2)) ^& (eq_c (n-1) (v % (1, n-1)) (c/2)) let rec all1 n x = if n = 1 then x else (x ** 0) ^& (all1 (n-1) (x % (1, n-1))) let rec nonnull n a = if n = 1 then a else (a ** 0) ^| (nonnull (n-1) (a % (1, n-1))) let rec sign_extend n_a n_dest a = a ++ rep (n_dest - n_a) (a ** (n_a - 1)) let fulladder a b c = let s = a ^^ b ^^ c in let r = (a ^& b) ^| ((a ^^ b) ^& c) in s, r let rec nadder n a b c_in = if n = 1 then fulladder a b c_in else let s_n, c_n1 = fulladder (a ** 0) (b ** 0) c_in in let s_n1, c_out = nadder (n-1) (a % (1, n-1)) (b % (1, n-1)) c_n1 in s_n ++ s_n1, c_out let rec npshift_signed n p a b = a (* TODO *) let nadder_nocarry n a b = let a, b = nadder n a b (const "0") in ignore b a let rec eq_n n a b = all1 n (not (a ^^ b)) let rec ne_n n a b = nonnull n (a ^^ b) let rec lt_n n a b = const "0" (* TODO : less than *) let rec ult_n n a b = const "0" (* TODO : less than, unsigned *) let rec le_n n a b = const "0" (* TODO : less than or equal *) let rec ule_n n a b = const "0" (* TODO : less than or equal, unsigned *) let alu_comparer n f0 f a b = (* f0 f action -- - ------ 0 0 equal 0 1 not equal 0 2 equal 0 3 not equal 1 0 lt 1 1 le 1 2 lt unsigned 1 3 le unsigned *) let eq_ne = mux (f ** 0) (eq_n n a b) (ne_n n a b) in let lte_signed = mux (f ** 0) (lt_n n a b) (le_n n a b) in let lte_unsigned = mux (f ** 0) (ult_n n a b) (ule_n n a b) in let lte = mux (f ** 1) lte_signed lte_unsigned in mux f0 eq_ne lte