#pragma once #include #define EPSILON 1e-6 #define abs(x) ((x)<0?-(x):(x)) struct vec { double x, y; vec(double xx, double yy) : x(xx), y(yy) {} double norm() const { return sqrt(x*x + y*y); } double sqnorm() const { return x*x + y*y; } double angle() const { double xx = x / norm(); double a = acos(x); return (y > 0 ? a : -a); } vec normalize() const { double n = norm(); return vec(x / n, y / n); } bool is_nil() const { return sqnorm() < EPSILON; } static vec from_polar(double r, double theta) { return vec(r * cos(theta), r * sin(theta)); } static double dot(vec a, vec b) { // dot product (produit scalaire) return a.x * b.x + a.y * b.y; } static double cross(vec a, vec b) { // cross product (déterminant 2x2) return a.x * b.y - a.y * b.x; } static double angle(vec a, vec b) { // oriented angle between two vectors if (a.is_nil() || b.is_nil()) return 0; float cos = dot(a.normalize(), b.normalize()); if (cos <= -1) return M_PI; float uangle = acos(cos); if (cross(a, b) > 0) { return uangle; } else { return -uangle; } } }; inline vec operator+(const vec& a, const vec& b) { return vec(a.x+b.x, a.y+b.y); } inline vec operator-(const vec& a, const vec& b) { return vec(a.x-b.x, a.y-b.y); } inline vec operator-(const vec& a) { return vec(-a.x, -a.y); } inline vec operator*(double a, const vec& v) { return vec(a*v.x, a*v.y); } inline vec operator*(const vec& v, double a) { return vec(a*v.x, a*v.y); } inline vec operator/(const vec& v, double a) { return vec(v.x/a, v.y/a); } struct line { // Line defined by ax + by + c = 0 double a, b, c; line(double aa, double bb, double cc) : a(aa), b(bb), c(cc) {} line(vec p1, vec p2) { a = p1.x-p2.x ; b = p1.y-p2.y ; c = p1.x*(p2.x-p1.x)+p1.y*(p2.y-p1.y); } bool on_line(vec p) const { return a * p.x + b * p.y + c < EPSILON; } double dist(vec p) const { // calculate distance from p to the line return abs(a*p.x + b*p.y + c) / sqrt(a*a + b*b); } vec proj(vec p) const { // calculate orthogonal projection of point p on the line // TODO return vec(0, 0); } double angle() const { return vec(-b, a).angle(); } }; struct segment { vec a, b; segment(vec pa, vec pb) : a(pa), b(pb) {} bool on_segment(vec p) const { // TODO // does point intersect segment? return false; } double dist(vec p) const { //TODO return 1; } }; struct circle { vec c; double r; circle(double x, double y, double rr) : c(x, y), r(rr) {} circle(vec cc, double rr) : c(cc), r(rr) {} bool on_circle(vec p) const { return ((p - c).norm() - r < EPSILON); } double dist(vec p) const { // TODO return 1; } }; struct circpoint { circle c; double theta; circpoint(circle cc, double th) : c(cc), theta(th) {} circpoint(vec cc, double rr, double th) : c(cc, rr), theta(th) {} vec pos() const { return c.c + vec(c.r * cos(theta), c.r * sin(theta)); } }; struct circarc { circle c; double theta1, theta2; circarc(circle cc, double tha, double thb) : c(cc), theta1(tha), theta2(thb) {} double dist(vec p) const { // TODO return 1; } }; /* vim: set ts=4 sw=4 tw=0 noet :*/