diff options
-rw-r--r-- | geom.hpp | 68 |
1 files changed, 48 insertions, 20 deletions
@@ -1,6 +1,8 @@ #pragma once #include <math.h> +#include <algorithm> +#include <assert.h> #define EPSILON 1e-6 #define abs(x) ((x)<0?-(x):(x)) @@ -13,14 +15,20 @@ struct vec { double norm() const { return sqrt(x*x + y*y); } + double sqnorm() const { return x*x + y*y; } + bool is_nil() const { + return sqnorm() < EPSILON; + } + double angle() const { + if (is_nil()) return 0; double xx = x / norm(); double a = acos(x); - return (y > 0 ? a : -a); + return (y >= 0 ? a : -a + 2*M_PI); } vec normalize() const { @@ -28,10 +36,6 @@ struct vec { return vec(x / n, y / n); } - bool is_nil() const { - return sqnorm() < EPSILON; - } - static vec from_polar(double r, double theta) { return vec(r * cos(theta), r * sin(theta)); } @@ -47,10 +51,10 @@ struct vec { float cos = dot(a.normalize(), b.normalize()); if (cos <= -1) return M_PI; float uangle = acos(cos); - if (cross(a, b) > 0) { + if (cross(a, b) >= 0) { return uangle; } else { - return -uangle; + return -uangle + 2*M_PI; } } }; @@ -61,6 +65,7 @@ inline vec operator-(const vec& a) { return vec(-a.x, -a.y); } inline vec operator*(double a, const vec& v) { return vec(a*v.x, a*v.y); } inline vec operator*(const vec& v, double a) { return vec(a*v.x, a*v.y); } inline vec operator/(const vec& v, double a) { return vec(v.x/a, v.y/a); } +inline bool operator==(const vec& v, const vec& w) { return (v-w).is_nil(); } struct line { // Line defined by ax + by + c = 0 @@ -135,30 +140,53 @@ struct circle { if (d > r) return (d - r); return 0; } -}; -struct circpoint { - circle c; - double theta; - - circpoint(circle cc, double th) : c(cc), theta(th) {} - circpoint(vec cc, double rr, double th) : c(cc, rr), theta(th) {} - - vec pos() const { - return c.c + vec(c.r * cos(theta), c.r * sin(theta)); + vec at_angle(double theta) const { + return c + vec(r * cos(theta), r * sin(theta)); } }; struct circarc { + // represents the arc from theta1 to theta2 moving in the direct way on the circle + // canonical representation : theta2 > theta1 circle c; double theta1, theta2; - circarc(circle cc, double tha, double thb) : c(cc), theta1(tha), theta2(thb) {} + circarc(circle cc, double tha, double thb) : c(cc), theta1(tha), theta2(thb) { + while (theta1 < 0) theta1 += 2*M_PI; + while (theta1 > 2*M_PI) theta1 -= 2*M_PI; + while (theta2 < theta1) theta2 += 2*M_PI; + while (theta2 > theta1 + 2*M_PI) theta2 -= 2*M_PI; + } + bool is_in_pie(vec p) const{ + double theta = (p - c.c).angle(); + if (theta > theta1 && theta2 > theta) return true ; + if (theta + 2*M_PI > theta1 && theta2 > theta + 2*M_PI) return true ; + return false ; + } double dist(vec p) const { - // TODO - return 1; + if (is_in_pie(p)) return abs((p-c.c).norm()-c.r); + return std::min((p - c.at_angle(theta1)).norm(), (p - c.at_angle(theta2)).norm()); } }; +struct angular_sector { + // attention, les circarc doivent avoir le même centre + circarc inner, outer; + + angular_sector(circarc i, circarc o) : inner(i), outer(o) { + assert(i.c.c == o.c.c); + } + bool is_in_sector(vec p) const{ + //TODO + return false; + } + + double dist(vec p) const{ + if (is_in_sector(p)) return 0; + //TODO + return 29 ; + } +}; /* vim: set ts=4 sw=4 tw=0 noet :*/ |