#include #include #include "algos.h" /* Heuristique de coloriage * Trouve un coloriage non-optimal (mais parfois proche) du sous-graphe engendré * par s dans le graphe g. * Ne donne pas le coloriage, mais juste le nombre de couleurs d'un coloriage possible (nombre que l'on cherche à minimiser) * Cet algorithme est assez naif mais il est fait pour tourner sur des graphes de taille petite (de l'ordre de 20), donc un * algorithme même en n^3 ou n^4 est acceptable (ou pas...) */ void color_subgraph_aux(const graph g, int *colors, int *v, const int n) { int i, j, t; if (n == 0) return; if (n == 1) { colors[0] = 0; return; } // Find element with smallest neighbours count int x = -1, m = n + 1; for (i = 0; i < n; i++) { t = 0; for (j = 0; j < n; j++) { if (set_mem(v[j], graph_neighbours(g, v[i]))) t++; } if (t < m) { x = i; m = t; } } // Put that element at the beginning of vector v, so that the remaining subgraph is defined by v[1..] if (x != 0) { t = v[x]; v[0] = v[x]; v[x] = t; } // Color remaining subgraph (v[1..]) color_subgraph_aux(g, colors + 1, v + 1, n - 1); // Find free color colors[0] = -1; bool used[n]; for (i = 0; i < n; i++) used[i] = false; for (i = 1; i < n; i++) { if (set_mem(v[i], graph_neighbours(g, v[0]))) used[colors[i]] = true; } for (i = 0; i < n; i++) { if (used[i] == false) { colors[0] = i; break; } } assert(colors[0] != -1); } int color_subgraph(const graph g, set s) { int i, m; const int n = set_size(s); if (n == 0) return 0; int colors[n], vertices[n]; for (i = 0; i < n; i++) colors[i] = 0; // Put all vertices in vertice vector (order is not important) vertices[0] = elt_of_set(s); set_remove_ip(vertices[0], s); i = 1; while (!is_set_empty(s)) { vertices[i] = elt_of_set_heur(s, vertices[i-1]); set_remove_ip(vertices[i], s); i++; } assert(i == n); // Color graph color_subgraph_aux(g, colors, vertices, n); // Count colors m = colors[0]; for (i = 1; i < n; i++) if (colors[i] > m) m = colors[i]; return m + 1; } /*Premier algorithme naïf. * g : graphe où on cherche les cliques * k : clique actuelle * c : noeuds candidats à l'ajout * mc : clique maximale actuelle */ void max_clique_a(const graph g, set k, set c, set *mc) { if (is_set_empty(c)) { if (set_size(k) > set_size(*mc)) { delete_set(*mc); *mc = copy_set(k); printf("Found new max clique: "); dump_set(*mc); fflush(stdout); } } else { set cc = copy_set(c); while (!(is_set_empty(cc))) { int x = elt_of_set(cc); set_remove_ip(x, cc); set k2 = set_add(x, k); set c2 = set_inter(c, graph_neighbours(g, x)); max_clique_a(g,k2, c2, mc); delete_set(k2); delete_set(c2); } delete_set(cc); } } /** Algorithme avec l'optimisation : on évite d'énumérer plusieurs fois * la même clique. * g : graphe où on cherche les cliques * k : clique actuelle * c : noeuds candidats à l'ajout * a : noeuds que l'on s'autorise à ajouter * mc : clique maximale actuelle * */ // Voir notice de convention ci-dessous void max_clique_b(const graph g, set k, set c, set a, set *mc) { if (is_set_empty(c)) { if (set_size(k) > set_size(*mc)) { delete_set(*mc); *mc = copy_set(k); printf("Found new max clique: "); dump_set(*mc); fflush(stdout); } } else { while (!(is_set_empty(a))) { int x = elt_of_set(a); set_remove_ip(x, a); set k2 = set_add(x, k); set c2 = set_inter(c, graph_neighbours(g, x)); set a2 = set_inter(a, graph_neighbours(g, x)); max_clique_b(g,k2, c2, a2, mc); delete_set(k2); delete_set(c2); delete_set(a2); } } } /** Algorithme avec la méthode du pivot * la même clique. * g : graphe où on cherche les cliques * k : clique actuelle * c : noeuds candidats à l'ajout * a : noeuds que l'on s'autorise à ajouter * mc : clique maximale actuelle * */ // Convention : lors d'un appel de fonction, les set donnés en // argument peuvent être modifiés à la guise de l'algorithme // Il est donc de la responsabilité de l'appellant de vérifier qu'à // chaque appel les sets sont utilisables et cohérents void max_clique_c(const graph g, set k, set c, set a, set *mc) { // If we have no chance of improving our max clique, exit if (set_size(k) + set_size(c) <= set_size(*mc)) return; // If we have improved our clique, great if (set_size(k) > set_size(*mc)) { delete_set(*mc); *mc = copy_set(k); printf("Found new max clique: "); dump_set(*mc); fflush(stdout); } // If we have no possibility to explore, return if (is_set_empty(c)) return; if (set_size(c) == g->N / 2) { // Color graph : we may have no possibility set c_copy = copy_set(c); int color_count = color_subgraph(g, c_copy); delete_set(c_copy); if (set_size(k) + color_count <= set_size(*mc)) return; } // Find u that maximises |C inter Gamma(u)| set c_it = copy_set(c); int u = elt_of_set(c_it), n = 0; set_remove_ip(u, c_it); { set temp = set_inter(c, graph_neighbours(g, u)); n = set_size(temp); delete_set(temp); } // Explore possibilites int heur = u; while (!is_set_empty(c_it)) { int uprime = elt_of_set_heur(c_it, heur); set_remove_ip(uprime, c_it); heur = uprime; set temp = set_inter(c, graph_neighbours(g, uprime)); if (set_size(temp) > n) { n = set_size(temp); u = uprime; } delete_set(temp); } delete_set(c_it); set t = set_diff(a, graph_neighbours(g, u)); heur = u; while (!is_set_empty(t)) { int x = elt_of_set_heur(t, heur); heur = x; set k2 = set_add(x, k); set c2 = set_inter(c, graph_neighbours(g, x)); set a2 = set_inter(a, graph_neighbours(g, x)); max_clique_c(g, k2, c2, a2, mc); delete_set(a2); delete_set(c2); delete_set(k2); set_remove_ip(x, a); delete_set(t); t = set_diff(a, graph_neighbours(g, u)); } delete_set(t); }