aboutsummaryrefslogtreecommitdiff
path: root/src/server.rs
blob: cd367c4c28be7ba854775901f67a2ca8305b71e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
use std::collections::HashMap;
use std::net::SocketAddr;
use std::sync::{Arc, Mutex};

use arc_swap::ArcSwapOption;
use async_trait::async_trait;
use log::*;

use futures::io::{AsyncReadExt, AsyncWriteExt};
use kuska_handshake::async_std::{handshake_server, BoxStream};
use tokio::net::TcpStream;
use tokio::select;
use tokio::sync::{mpsc, watch};
use tokio_util::compat::*;

#[cfg(feature = "telemetry")]
use opentelemetry::{
	trace::{FutureExt, Span, SpanKind, TraceContextExt, TraceId, Tracer},
	Context, KeyValue,
};
#[cfg(feature = "telemetry")]
use opentelemetry_contrib::trace::propagator::binary::*;
#[cfg(feature = "telemetry")]
use rand::{thread_rng, Rng};

use crate::error::*;
use crate::message::*;
use crate::netapp::*;
use crate::recv::*;
use crate::send::*;
use crate::stream::*;
use crate::util::*;

// The client and server connection structs (client.rs and server.rs)
// build upon the chunking mechanism which is exclusively contained
// in proto.rs.
// Here, we just care about sending big messages without size limit.
// The format of these messages is described below.
// Chunking happens independently.

// Request message format (client -> server):
// - u8 priority
// - u8 path length
// - [u8; path length] path
// - [u8; *] data

// Response message format (server -> client):
// - u8 response code
// - [u8; *] response

pub(crate) struct ServerConn {
	pub(crate) remote_addr: SocketAddr,
	pub(crate) peer_id: NodeID,

	netapp: Arc<NetApp>,

	resp_send: ArcSwapOption<mpsc::UnboundedSender<SendItem>>,
	running_handlers: Mutex<HashMap<RequestID, tokio::task::JoinHandle<()>>>,
}

impl ServerConn {
	pub(crate) async fn run(
		netapp: Arc<NetApp>,
		socket: TcpStream,
		must_exit: watch::Receiver<bool>,
	) -> Result<(), Error> {
		let remote_addr = socket.peer_addr()?;
		let mut socket = socket.compat();

		// Do handshake to authenticate client
		let handshake = handshake_server(
			&mut socket,
			netapp.netid.clone(),
			netapp.id,
			netapp.privkey.clone(),
		)
		.await?;
		let peer_id = handshake.peer_pk;

		debug!(
			"Handshake complete (server) with {}@{}",
			hex::encode(&peer_id),
			remote_addr
		);

		// Create BoxStream layer that encodes content
		let (read, write) = socket.split();
		let (read, mut write) =
			BoxStream::from_handshake(read, write, handshake, 0x8000).split_read_write();

		// Before doing anything, send version tag, so that client
		// can check and disconnect if version is wrong
		write.write_all(&netapp.version_tag[..]).await?;
		write.flush().await?;

		// Build and launch stuff that handles requests server-side
		let (resp_send, resp_recv) = mpsc::unbounded_channel();

		let conn = Arc::new(ServerConn {
			netapp: netapp.clone(),
			remote_addr,
			peer_id,
			resp_send: ArcSwapOption::new(Some(Arc::new(resp_send))),
			running_handlers: Mutex::new(HashMap::new()),
		});

		netapp.connected_as_server(peer_id, conn.clone());

		let debug_name = format!("SRV {}", hex::encode(&peer_id[..8]));
		let debug_name_2 = debug_name.clone();

		let conn2 = conn.clone();
		let recv_future = tokio::spawn(async move {
			select! {
				r = conn2.recv_loop(read, debug_name_2) => r,
				_ = await_exit(must_exit) => Ok(())
			}
		});
		let send_future = tokio::spawn(conn.clone().send_loop(resp_recv, write, debug_name));

		recv_future.await.log_err("ServerConn recv_loop");
		conn.resp_send.store(None);
		send_future.await.log_err("ServerConn send_loop");

		netapp.disconnected_as_server(&peer_id, conn);

		Ok(())
	}

	async fn recv_handler_aux(self: &Arc<Self>, req_enc: ReqEnc) -> Result<RespEnc, Error> {
		let path = String::from_utf8(req_enc.path.to_vec())?;

		let handler_opt = {
			let endpoints = self.netapp.endpoints.read().unwrap();
			endpoints.get(&path).map(|e| e.clone_endpoint())
		};

		if let Some(handler) = handler_opt {
			cfg_if::cfg_if! {
				if #[cfg(feature = "telemetry")] {
					let tracer = opentelemetry::global::tracer("netapp");

					let mut span = if !req_enc.telemetry_id.is_empty() {
						let propagator = BinaryPropagator::new();
						let context = propagator.from_bytes(req_enc.telemetry_id.to_vec());
						let context = Context::new().with_remote_span_context(context);
						tracer.span_builder(format!(">> RPC {}", path))
							.with_kind(SpanKind::Server)
							.start_with_context(&tracer, &context)
					} else {
						let mut rng = thread_rng();
						let trace_id = TraceId::from_bytes(rng.gen());
						tracer
							.span_builder(format!(">> RPC {}", path))
							.with_kind(SpanKind::Server)
							.with_trace_id(trace_id)
							.start(&tracer)
					};
					span.set_attribute(KeyValue::new("path", path.to_string()));
					span.set_attribute(KeyValue::new("len_query_msg", req_enc.msg.len() as i64));

					handler.handle(req_enc, self.peer_id)
						.with_context(Context::current_with_span(span))
						.await
				} else {
					handler.handle(req_enc, self.peer_id).await
				}
			}
		} else {
			Err(Error::NoHandler)
		}
	}
}

impl SendLoop for ServerConn {}

#[async_trait]
impl RecvLoop for ServerConn {
	fn recv_handler(self: &Arc<Self>, id: RequestID, stream: ByteStream) {
		let resp_send = match self.resp_send.load_full() {
			Some(c) => c,
			None => return,
		};

		let mut rh = self.running_handlers.lock().unwrap();

		let self2 = self.clone();
		let jh = tokio::spawn(async move {
			debug!("server: recv_handler got {}", id);

			let (prio, resp_enc_result) = match ReqEnc::decode(stream).await {
				Ok(req_enc) => (req_enc.prio, self2.recv_handler_aux(req_enc).await),
				Err(e) => (PRIO_HIGH, Err(e)),
			};

			debug!("server: sending response to {}", id);

			let (resp_stream, resp_order) = RespEnc::encode(resp_enc_result);
			resp_send
				.send(SendItem::Stream(id, prio, resp_order, resp_stream))
				.log_err("ServerConn recv_handler send resp bytes");

			self2.running_handlers.lock().unwrap().remove(&id);
		});

		rh.insert(id, jh);
	}

	fn cancel_handler(self: &Arc<Self>, id: RequestID) {
		trace!("received cancel for request {}", id);

		// If the handler is still running, abort it now
		if let Some(jh) = self.running_handlers.lock().unwrap().remove(&id) {
			jh.abort();
		}

		// Inform the response sender that we don't need to send the response
		if let Some(resp_send) = self.resp_send.load_full() {
			let _ = resp_send.send(SendItem::Cancel(id));
		}
	}
}