1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
use std::collections::{HashMap, VecDeque};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use log::{trace, warn};
use futures::channel::mpsc::{unbounded, UnboundedReceiver, UnboundedSender};
use futures::Stream;
use futures::{AsyncReadExt, AsyncWriteExt, FutureExt, StreamExt};
use kuska_handshake::async_std::BoxStreamWrite;
use tokio::sync::mpsc;
use async_trait::async_trait;
use crate::error::*;
use crate::util::AssociatedStream;
/// Priority of a request (click to read more about priorities).
///
/// This priority value is used to priorize messages
/// in the send queue of the client, and their responses in the send queue of the
/// server. Lower values mean higher priority.
///
/// This mechanism is usefull for messages bigger than the maximum chunk size
/// (set at `0x4000` bytes), such as large file transfers.
/// In such case, all of the messages in the send queue with the highest priority
/// will take turns to send individual chunks, in a round-robin fashion.
/// Once all highest priority messages are sent successfully, the messages with
/// the next highest priority will begin being sent in the same way.
///
/// The same priority value is given to a request and to its associated response.
pub type RequestPriority = u8;
/// Priority class: high
pub const PRIO_HIGH: RequestPriority = 0x20;
/// Priority class: normal
pub const PRIO_NORMAL: RequestPriority = 0x40;
/// Priority class: background
pub const PRIO_BACKGROUND: RequestPriority = 0x80;
/// Priority: primary among given class
pub const PRIO_PRIMARY: RequestPriority = 0x00;
/// Priority: secondary among given class (ex: `PRIO_HIGH | PRIO_SECONDARY`)
pub const PRIO_SECONDARY: RequestPriority = 0x01;
// Messages are sent by chunks
// Chunk format:
// - u32 BE: request id (same for request and response)
// - u16 BE: chunk length, possibly with CHUNK_HAS_CONTINUATION flag
// when this is not the last chunk of the message
// - [u8; chunk_length] chunk data
pub(crate) type RequestID = u32;
type ChunkLength = u16;
const MAX_CHUNK_LENGTH: ChunkLength = 0x4000;
const CHUNK_HAS_CONTINUATION: ChunkLength = 0x8000;
struct SendQueueItem {
id: RequestID,
prio: RequestPriority,
data: DataReader,
}
pub(crate) enum Data {
Full(Vec<u8>),
Streaming(AssociatedStream),
}
#[pin_project::pin_project(project = DataReaderProj)]
enum DataReader {
Full {
#[pin]
data: Vec<u8>,
pos: usize,
},
Streaming {
#[pin]
reader: AssociatedStream,
packet: Vec<u8>,
pos: usize,
buf: Vec<u8>,
eos: bool,
},
}
impl From<Data> for DataReader {
fn from(data: Data) -> DataReader {
match data {
Data::Full(data) => DataReader::Full { data, pos: 0 },
Data::Streaming(reader) => DataReader::Streaming {
reader,
packet: Vec::new(),
pos: 0,
buf: Vec::with_capacity(MAX_CHUNK_LENGTH as usize),
eos: false,
},
}
}
}
impl Stream for DataReader {
type Item = ([u8; MAX_CHUNK_LENGTH as usize], usize);
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
match self.project() {
DataReaderProj::Full { data, pos } => {
let len = std::cmp::min(MAX_CHUNK_LENGTH as usize, data.len() - *pos);
let end = *pos + len;
if len == 0 {
Poll::Ready(None)
} else {
let mut body = [0; MAX_CHUNK_LENGTH as usize];
body[..len].copy_from_slice(&data[*pos..end]);
*pos = end;
Poll::Ready(Some((body, len)))
}
}
DataReaderProj::Streaming {
mut reader,
packet,
pos,
buf,
eos,
} => {
if *eos {
// eos was reached at previous call to poll_next, where a partial packet
// was returned. Now return None
return Poll::Ready(None);
}
loop {
let packet_left = packet.len() - *pos;
let buf_left = MAX_CHUNK_LENGTH as usize - buf.len();
let to_read = std::cmp::min(buf_left, packet_left);
buf.extend_from_slice(&packet[*pos..*pos + to_read]);
*pos += to_read;
if buf.len() == MAX_CHUNK_LENGTH as usize {
// we have a full buf, ready to send
break;
}
// we don't have a full buf, packet is empty; try receive more
if let Some(p) = futures::ready!(reader.as_mut().poll_next(cx)) {
*packet = p;
*pos = 0;
} else {
*eos = true;
break;
}
}
let mut body = [0; MAX_CHUNK_LENGTH as usize];
let len = buf.len();
body[..len].copy_from_slice(buf);
buf.clear();
Poll::Ready(Some((body, len)))
}
}
}
}
struct SendQueue {
items: VecDeque<(u8, VecDeque<SendQueueItem>)>,
}
impl SendQueue {
fn new() -> Self {
Self {
items: VecDeque::with_capacity(64),
}
}
fn push(&mut self, item: SendQueueItem) {
let prio = item.prio;
let pos_prio = match self.items.binary_search_by(|(p, _)| p.cmp(&prio)) {
Ok(i) => i,
Err(i) => {
self.items.insert(i, (prio, VecDeque::new()));
i
}
};
self.items[pos_prio].1.push_back(item);
}
fn pop(&mut self) -> Option<SendQueueItem> {
match self.items.pop_front() {
None => None,
Some((prio, mut items_at_prio)) => {
let ret = items_at_prio.pop_front();
if !items_at_prio.is_empty() {
self.items.push_front((prio, items_at_prio));
}
ret.or_else(|| self.pop())
}
}
}
fn is_empty(&self) -> bool {
self.items.iter().all(|(_k, v)| v.is_empty())
}
}
/// The SendLoop trait, which is implemented both by the client and the server
/// connection objects (ServerConna and ClientConn) adds a method `.send_loop()`
/// that takes a channel of messages to send and an asynchronous writer,
/// and sends messages from the channel to the async writer, putting them in a queue
/// before being sent and doing the round-robin sending strategy.
///
/// The `.send_loop()` exits when the sending end of the channel is closed,
/// or if there is an error at any time writing to the async writer.
#[async_trait]
pub(crate) trait SendLoop: Sync {
async fn send_loop<W>(
self: Arc<Self>,
mut msg_recv: mpsc::UnboundedReceiver<(RequestID, RequestPriority, Data)>,
mut write: BoxStreamWrite<W>,
) -> Result<(), Error>
where
W: AsyncWriteExt + Unpin + Send + Sync,
{
let mut sending = SendQueue::new();
let mut should_exit = false;
while !should_exit || !sending.is_empty() {
if let Ok((id, prio, data)) = msg_recv.try_recv() {
match &data {
Data::Full(data) => {
trace!("send_loop: got {}, {} bytes", id, data.len());
}
Data::Streaming(_) => {
trace!("send_loop: got {}, unknown size", id);
}
}
sending.push(SendQueueItem {
id,
prio,
data: data.into(),
});
} else if let Some(mut item) = sending.pop() {
trace!("send_loop: sending bytes for {}", item.id,);
let data = futures::select! {
data = item.data.next().fuse() => data,
default => {
// nothing to send yet; re-schedule and find something else to do
sending.push(item);
continue;
// TODO if every SendQueueItem is waiting on data, use select_all to await
// something to do
}
};
let header_id = RequestID::to_be_bytes(item.id);
write.write_all(&header_id[..]).await?;
let data = match data.as_ref() {
Some((data, len)) => &data[..*len],
None => &[],
};
if data.len() == MAX_CHUNK_LENGTH as usize {
let size_header =
ChunkLength::to_be_bytes(data.len() as u16 | CHUNK_HAS_CONTINUATION);
write.write_all(&size_header[..]).await?;
write.write_all(data).await?;
sending.push(item);
} else {
let size_header = ChunkLength::to_be_bytes(data.len() as u16);
write.write_all(&size_header[..]).await?;
write.write_all(data).await?;
}
write.flush().await?;
} else {
let sth = msg_recv.recv().await;
if let Some((id, prio, data)) = sth {
match &data {
Data::Full(data) => {
trace!("send_loop: got {}, {} bytes", id, data.len());
}
Data::Streaming(_) => {
trace!("send_loop: got {}, unknown size", id);
}
}
sending.push(SendQueueItem {
id,
prio,
data: data.into(),
});
} else {
should_exit = true;
}
}
}
let _ = write.goodbye().await;
Ok(())
}
}
struct ChannelPair {
receiver: Option<UnboundedReceiver<Vec<u8>>>,
sender: Option<UnboundedSender<Vec<u8>>>,
}
impl ChannelPair {
fn take_receiver(&mut self) -> Option<UnboundedReceiver<Vec<u8>>> {
self.receiver.take()
}
fn take_sender(&mut self) -> Option<UnboundedSender<Vec<u8>>> {
self.sender.take()
}
fn ref_sender(&mut self) -> Option<&UnboundedSender<Vec<u8>>> {
self.sender.as_ref().take()
}
fn insert_into(self, map: &mut HashMap<RequestID, ChannelPair>, index: RequestID) {
if self.receiver.is_some() || self.sender.is_some() {
map.insert(index, self);
}
}
}
impl Default for ChannelPair {
fn default() -> Self {
let (send, recv) = unbounded();
ChannelPair {
receiver: Some(recv),
sender: Some(send),
}
}
}
/// The RecvLoop trait, which is implemented both by the client and the server
/// connection objects (ServerConn and ClientConn) adds a method `.recv_loop()`
/// and a prototype of a handler for received messages `.recv_handler()` that
/// must be filled by implementors. `.recv_loop()` receives messages in a loop
/// according to the protocol defined above: chunks of message in progress of being
/// received are stored in a buffer, and when the last chunk of a message is received,
/// the full message is passed to the receive handler.
#[async_trait]
pub(crate) trait RecvLoop: Sync + 'static {
fn recv_handler(self: &Arc<Self>, id: RequestID, msg: Vec<u8>, stream: AssociatedStream);
async fn recv_loop<R>(self: Arc<Self>, mut read: R) -> Result<(), Error>
where
R: AsyncReadExt + Unpin + Send + Sync,
{
let mut receiving: HashMap<RequestID, Vec<u8>> = HashMap::new();
let mut streams: HashMap<RequestID, ChannelPair> = HashMap::new();
loop {
trace!("recv_loop: reading packet");
let mut header_id = [0u8; RequestID::BITS as usize / 8];
match read.read_exact(&mut header_id[..]).await {
Ok(_) => (),
Err(e) if e.kind() == std::io::ErrorKind::UnexpectedEof => break,
Err(e) => return Err(e.into()),
};
let id = RequestID::from_be_bytes(header_id);
trace!("recv_loop: got header id: {:04x}", id);
let mut header_size = [0u8; ChunkLength::BITS as usize / 8];
read.read_exact(&mut header_size[..]).await?;
let size = ChunkLength::from_be_bytes(header_size);
trace!("recv_loop: got header size: {:04x}", size);
let has_cont = (size & CHUNK_HAS_CONTINUATION) != 0;
let size = size & !CHUNK_HAS_CONTINUATION;
let mut next_slice = vec![0; size as usize];
read.read_exact(&mut next_slice[..]).await?;
trace!("recv_loop: read {} bytes", next_slice.len());
if id & 1 == 0 {
// main stream
let mut msg_bytes = receiving.remove(&id).unwrap_or_default();
msg_bytes.extend_from_slice(&next_slice[..]);
if has_cont {
receiving.insert(id, msg_bytes);
} else {
let mut channel_pair = streams.remove(&(id | 1)).unwrap_or_default();
if let Some(receiver) = channel_pair.take_receiver() {
self.recv_handler(id, msg_bytes, Box::pin(receiver));
} else {
warn!("Couldn't take receiver part of stream")
}
channel_pair.insert_into(&mut streams, id | 1);
}
} else {
// associated stream
let mut channel_pair = streams.remove(&(id)).unwrap_or_default();
// if we get an error, the receiving end is disconnected. We still need to
// reach eos before dropping this sender
if !next_slice.is_empty() {
if let Some(sender) = channel_pair.ref_sender() {
let _ = sender.unbounded_send(next_slice);
} else {
warn!("Couldn't take sending part of stream")
}
}
if !has_cont {
channel_pair.take_sender();
}
channel_pair.insert_into(&mut streams, id);
}
}
Ok(())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_priority_queue() {
let i1 = SendQueueItem {
id: 1,
prio: PRIO_NORMAL,
data: DataReader::Full {
data: vec![],
pos: 0,
},
};
let i2 = SendQueueItem {
id: 2,
prio: PRIO_HIGH,
data: DataReader::Full {
data: vec![],
pos: 0,
},
};
let i2bis = SendQueueItem {
id: 20,
prio: PRIO_HIGH,
data: DataReader::Full {
data: vec![],
pos: 0,
},
};
let i3 = SendQueueItem {
id: 3,
prio: PRIO_HIGH | PRIO_SECONDARY,
data: DataReader::Full {
data: vec![],
pos: 0,
},
};
let i4 = SendQueueItem {
id: 4,
prio: PRIO_BACKGROUND | PRIO_SECONDARY,
data: DataReader::Full {
data: vec![],
pos: 0,
},
};
let i5 = SendQueueItem {
id: 5,
prio: PRIO_BACKGROUND | PRIO_PRIMARY,
data: DataReader::Full {
data: vec![],
pos: 0,
},
};
let mut q = SendQueue::new();
q.push(i1); // 1
let a = q.pop().unwrap(); // empty -> 1
assert_eq!(a.id, 1);
assert!(q.pop().is_none());
q.push(a); // 1
q.push(i2); // 2 1
q.push(i2bis); // [2 20] 1
let a = q.pop().unwrap(); // 20 1 -> 2
assert_eq!(a.id, 2);
let b = q.pop().unwrap(); // 1 -> 20
assert_eq!(b.id, 20);
let c = q.pop().unwrap(); // empty -> 1
assert_eq!(c.id, 1);
assert!(q.pop().is_none());
q.push(a); // 2
q.push(b); // [2 20]
q.push(c); // [2 20] 1
q.push(i3); // [2 20] 3 1
q.push(i4); // [2 20] 3 1 4
q.push(i5); // [2 20] 3 1 5 4
let a = q.pop().unwrap(); // 20 3 1 5 4 -> 2
assert_eq!(a.id, 2);
q.push(a); // [20 2] 3 1 5 4
let a = q.pop().unwrap(); // 2 3 1 5 4 -> 20
assert_eq!(a.id, 20);
let b = q.pop().unwrap(); // 3 1 5 4 -> 2
assert_eq!(b.id, 2);
q.push(b); // 2 3 1 5 4
let b = q.pop().unwrap(); // 3 1 5 4 -> 2
assert_eq!(b.id, 2);
let c = q.pop().unwrap(); // 1 5 4 -> 3
assert_eq!(c.id, 3);
q.push(b); // 2 1 5 4
let b = q.pop().unwrap(); // 1 5 4 -> 2
assert_eq!(b.id, 2);
let e = q.pop().unwrap(); // 5 4 -> 1
assert_eq!(e.id, 1);
let f = q.pop().unwrap(); // 4 -> 5
assert_eq!(f.id, 5);
let g = q.pop().unwrap(); // empty -> 4
assert_eq!(g.id, 4);
assert!(q.pop().is_none());
}
}
|