use std::collections::VecDeque;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use async_trait::async_trait;
use log::trace;
use futures::AsyncWriteExt;
use futures::Stream;
use kuska_handshake::async_std::BoxStreamWrite;
use tokio::sync::mpsc;
use crate::error::*;
use crate::message::*;
use crate::util::{ByteStream, Packet};
// Messages are sent by chunks
// Chunk format:
// - u32 BE: request id (same for request and response)
// - u16 BE: chunk length, possibly with CHUNK_HAS_CONTINUATION flag
// when this is not the last chunk of the message
// - [u8; chunk_length] chunk data
pub(crate) type RequestID = u32;
pub(crate) type ChunkLength = u16;
pub(crate) const MAX_CHUNK_LENGTH: ChunkLength = 0x3FF0;
pub(crate) const ERROR_MARKER: ChunkLength = 0x4000;
pub(crate) const CHUNK_HAS_CONTINUATION: ChunkLength = 0x8000;
struct SendQueueItem {
id: RequestID,
prio: RequestPriority,
data: DataReader,
}
#[pin_project::pin_project]
struct DataReader {
#[pin]
reader: ByteStream,
packet: Packet,
pos: usize,
buf: Vec<u8>,
eos: bool,
}
impl From<ByteStream> for DataReader {
fn from(data: ByteStream) -> DataReader {
DataReader {
reader: data,
packet: Ok(Vec::new()),
pos: 0,
buf: Vec::with_capacity(MAX_CHUNK_LENGTH as usize),
eos: false,
}
}
}
enum DataFrame {
Data {
/// a fixed size buffer containing some data, possibly padded with 0s
data: [u8; MAX_CHUNK_LENGTH as usize],
/// actual lenght of data
len: usize,
},
Error(u8),
}
struct DataReaderItem {
data: DataFrame,
/// whethere there may be more data comming from this stream. Can be used for some
/// optimization. It's an error to set it to false if there is more data, but it is correct
/// (albeit sub-optimal) to set it to true if there is nothing coming after
may_have_more: bool,
}
impl DataReaderItem {
fn empty_last() -> Self {
DataReaderItem {
data: DataFrame::Data {
data: [0; MAX_CHUNK_LENGTH as usize],
len: 0,
},
may_have_more: false,
}
}
fn header(&self) -> [u8; 2] {
let continuation = if self.may_have_more {
CHUNK_HAS_CONTINUATION
} else {
0
};
let len = match self.data {
DataFrame::Data { len, .. } => len as u16,
DataFrame::Error(e) => e as u16 | ERROR_MARKER,
};
ChunkLength::to_be_bytes(len | continuation)
}
fn data(&self) -> &[u8] {
match self.data {
DataFrame::Data { ref data, len } => &data[..len],
DataFrame::Error(_) => &[],
}
}
}
impl Stream for DataReader {
type Item = DataReaderItem;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let mut this = self.project();
if *this.eos {
// eos was reached at previous call to poll_next, where a partial packet
// was returned. Now return None
return Poll::Ready(None);
}
loop {
let packet = match this.packet {
Ok(v) => v,
Err(e) => {
let e = *e;
*this.packet = Ok(Vec::new());
return Poll::Ready(Some(DataReaderItem {
data: DataFrame::Error(e),
may_have_more: true,
}));
}
};
let packet_left = packet.len() - *this.pos;
let buf_left = MAX_CHUNK_LENGTH as usize - this.buf.len();
let to_read = std::cmp::min(buf_left, packet_left);
this.buf
.extend_from_slice(&packet[*this.pos..*this.pos + to_read]);
*this.pos += to_read;
if this.buf.len() == MAX_CHUNK_LENGTH as usize {
// we have a full buf, ready to send
break;
}
// we don't have a full buf, packet is empty; try receive more
if let Some(p) = futures::ready!(this.reader.as_mut().poll_next(cx)) {
*this.packet = p;
*this.pos = 0;
// if buf is empty, we will loop and return the error directly. If buf
// isn't empty, send it before by breaking.
if this.packet.is_err() && !this.buf.is_empty() {
break;
}
} else {
*this.eos = true;
break;
}
}
let mut body = [0; MAX_CHUNK_LENGTH as usize];
let len = this.buf.len();
body[..len].copy_from_slice(this.buf);
this.buf.clear();
Poll::Ready(Some(DataReaderItem {
data: DataFrame::Data { data: body, len },
may_have_more: !*this.eos,
}))
}
}
struct SendQueue {
items: VecDeque<(u8, VecDeque<SendQueueItem>)>,
}
impl SendQueue {
fn new() -> Self {
Self {
items: VecDeque::with_capacity(64),
}
}
fn push(&mut self, item: SendQueueItem) {
let prio = item.prio;
let pos_prio = match self.items.binary_search_by(|(p, _)| p.cmp(&prio)) {
Ok(i) => i,
Err(i) => {
self.items.insert(i, (prio, VecDeque::new()));
i
}
};
self.items[pos_prio].1.push_back(item);
}
// used only in tests. They should probably be rewriten
#[allow(dead_code)]
fn pop(&mut self) -> Option<SendQueueItem> {
match self.items.pop_front() {
None => None,
Some((prio, mut items_at_prio)) => {
let ret = items_at_prio.pop_front();
if !items_at_prio.is_empty() {
self.items.push_front((prio, items_at_prio));
}
ret.or_else(|| self.pop())
}
}
}
fn is_empty(&self) -> bool {
self.items.iter().all(|(_k, v)| v.is_empty())
}
// this is like an async fn, but hand implemented
fn next_ready(&mut self) -> SendQueuePollNextReady<'_> {
SendQueuePollNextReady { queue: self }
}
}
struct SendQueuePollNextReady<'a> {
queue: &'a mut SendQueue,
}
impl<'a> futures::Future for SendQueuePollNextReady<'a> {
type Output = (RequestID, DataReaderItem);
fn poll(mut self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
for i in 0..self.queue.items.len() {
let (_prio, items_at_prio) = &mut self.queue.items[i];
for _ in 0..items_at_prio.len() {
let mut item = items_at_prio.pop_front().unwrap();
match Pin::new(&mut item.data).poll_next(ctx) {
Poll::Pending => items_at_prio.push_back(item),
Poll::Ready(Some(data)) => {
let id = item.id;
if data.may_have_more {
self.queue.push(item);
} else {
if items_at_prio.is_empty() {
// this priority level is empty, remove it
self.queue.items.remove(i);
}
}
return Poll::Ready((id, data));
}
Poll::Ready(None) => {
if items_at_prio.is_empty() {
// this priority level is empty, remove it
self.queue.items.remove(i);
}
return Poll::Ready((item.id, DataReaderItem::empty_last()));
}
}
}
}
// TODO what do we do if self.queue is empty? We won't get scheduled again.
Poll::Pending
}
}
/// The SendLoop trait, which is implemented both by the client and the server
/// connection objects (ServerConna and ClientConn) adds a method `.send_loop()`
/// that takes a channel of messages to send and an asynchronous writer,
/// and sends messages from the channel to the async writer, putting them in a queue
/// before being sent and doing the round-robin sending strategy.
///
/// The `.send_loop()` exits when the sending end of the channel is closed,
/// or if there is an error at any time writing to the async writer.
#[async_trait]
pub(crate) trait SendLoop: Sync {
async fn send_loop<W>(
self: Arc<Self>,
mut msg_recv: mpsc::UnboundedReceiver<(RequestID, RequestPriority, ByteStream)>,
mut write: BoxStreamWrite<W>,
) -> Result<(), Error>
where
W: AsyncWriteExt + Unpin + Send + Sync,
{
let mut sending = SendQueue::new();
let mut should_exit = false;
while !should_exit || !sending.is_empty() {
let recv_fut = msg_recv.recv();
futures::pin_mut!(recv_fut);
let send_fut = sending.next_ready();
// recv_fut is cancellation-safe according to tokio doc,
// send_fut is cancellation-safe as implemented above?
use futures::future::Either;
match futures::future::select(recv_fut, send_fut).await {
Either::Left((sth, _send_fut)) => {
if let Some((id, prio, data)) = sth {
sending.push(SendQueueItem {
id,
prio,
data: data.into(),
});
} else {
should_exit = true;
};
}
Either::Right(((id, data), _recv_fut)) => {
trace!("send_loop: sending bytes for {}", id);
let header_id = RequestID::to_be_bytes(id);
write.write_all(&header_id[..]).await?;
write.write_all(&data.header()).await?;
write.write_all(data.data()).await?;
write.flush().await?;
}
}
}
let _ = write.goodbye().await;
Ok(())
}
}
#[cfg(test)]
mod test {
use super::*;
fn empty_data() -> DataReader {
type Item = Packet;
let stream: Pin<Box<dyn futures::Stream<Item = Item> + Send + 'static>> =
Box::pin(futures::stream::empty::<Packet>());
stream.into()
}
#[test]
fn test_priority_queue() {
let i1 = SendQueueItem {
id: 1,
prio: PRIO_NORMAL,
data: empty_data(),
};
let i2 = SendQueueItem {
id: 2,
prio: PRIO_HIGH,
data: empty_data(),
};
let i2bis = SendQueueItem {
id: 20,
prio: PRIO_HIGH,
data: empty_data(),
};
let i3 = SendQueueItem {
id: 3,
prio: PRIO_HIGH | PRIO_SECONDARY,
data: empty_data(),
};
let i4 = SendQueueItem {
id: 4,
prio: PRIO_BACKGROUND | PRIO_SECONDARY,
data: empty_data(),
};
let i5 = SendQueueItem {
id: 5,
prio: PRIO_BACKGROUND | PRIO_PRIMARY,
data: empty_data(),
};
let mut q = SendQueue::new();
q.push(i1); // 1
let a = q.pop().unwrap(); // empty -> 1
assert_eq!(a.id, 1);
assert!(q.pop().is_none());
q.push(a); // 1
q.push(i2); // 2 1
q.push(i2bis); // [2 20] 1
let a = q.pop().unwrap(); // 20 1 -> 2
assert_eq!(a.id, 2);
let b = q.pop().unwrap(); // 1 -> 20
assert_eq!(b.id, 20);
let c = q.pop().unwrap(); // empty -> 1
assert_eq!(c.id, 1);
assert!(q.pop().is_none());
q.push(a); // 2
q.push(b); // [2 20]
q.push(c); // [2 20] 1
q.push(i3); // [2 20] 3 1
q.push(i4); // [2 20] 3 1 4
q.push(i5); // [2 20] 3 1 5 4
let a = q.pop().unwrap(); // 20 3 1 5 4 -> 2
assert_eq!(a.id, 2);
q.push(a); // [20 2] 3 1 5 4
let a = q.pop().unwrap(); // 2 3 1 5 4 -> 20
assert_eq!(a.id, 20);
let b = q.pop().unwrap(); // 3 1 5 4 -> 2
assert_eq!(b.id, 2);
q.push(b); // 2 3 1 5 4
let b = q.pop().unwrap(); // 3 1 5 4 -> 2
assert_eq!(b.id, 2);
let c = q.pop().unwrap(); // 1 5 4 -> 3
assert_eq!(c.id, 3);
q.push(b); // 2 1 5 4
let b = q.pop().unwrap(); // 1 5 4 -> 2
assert_eq!(b.id, 2);
let e = q.pop().unwrap(); // 5 4 -> 1
assert_eq!(e.id, 1);
let f = q.pop().unwrap(); // 4 -> 5
assert_eq!(f.id, 5);
let g = q.pop().unwrap(); // empty -> 4
assert_eq!(g.id, 4);
assert!(q.pop().is_none());
}
}