1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
use std::sync::Arc;
use std::time::Duration;
use futures::select;
use futures_util::future::*;
use serde::{Deserialize, Serialize};
use tokio::sync::watch;
use garage_db as db;
use garage_util::background::BackgroundRunner;
use garage_util::data::*;
use garage_util::error::Error;
use garage_rpc::ring::*;
use crate::data::*;
use crate::replication::*;
use crate::schema::*;
// This modules partitions the data in 2**16 partitions, based on the top
// 16 bits (two bytes) of item's partition keys' hashes.
// It builds one Merkle tree for each of these 2**16 partitions.
pub struct MerkleUpdater<F: TableSchema, R: TableReplication> {
data: Arc<TableData<F, R>>,
// Content of the todo tree: items where
// - key = the key of an item in the main table, ie hash(partition_key)+sort_key
// - value = the hash of the full serialized item, if present,
// or an empty vec if item is absent (deleted)
// Fields in data:
// pub(crate) merkle_todo: sled::Tree,
// pub(crate) merkle_todo_notify: Notify,
// Content of the merkle tree: items where
// - key = .bytes() for MerkleNodeKey
// - value = serialization of a MerkleNode, assumed to be MerkleNode::empty if not found
// Field in data:
// pub(crate) merkle_tree: sled::Tree,
empty_node_hash: Hash,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct MerkleNodeKey {
// partition number
pub partition: Partition,
// prefix: a prefix for the hash of full keys, i.e. hash(hash(partition_key)+sort_key)
#[serde(with = "serde_bytes")]
pub prefix: Vec<u8>,
}
#[derive(PartialEq, Eq, Debug, Serialize, Deserialize)]
pub enum MerkleNode {
// The empty Merkle node
Empty,
// An intermediate Merkle tree node for a prefix
// Contains the hashes of the 256 possible next prefixes
Intermediate(Vec<(u8, Hash)>),
// A final node for an item
// Contains the full key of the item and the hash of the value
Leaf(Vec<u8>, Hash),
}
impl<F, R> MerkleUpdater<F, R>
where
F: TableSchema + 'static,
R: TableReplication + 'static,
{
pub(crate) fn launch(background: &BackgroundRunner, data: Arc<TableData<F, R>>) -> Arc<Self> {
let empty_node_hash = blake2sum(&rmp_to_vec_all_named(&MerkleNode::Empty).unwrap()[..]);
let ret = Arc::new(Self {
data,
empty_node_hash,
});
let ret2 = ret.clone();
background.spawn_worker(
format!("Merkle tree updater for {}", F::TABLE_NAME),
|must_exit: watch::Receiver<bool>| ret2.updater_loop(must_exit),
);
ret
}
async fn updater_loop(self: Arc<Self>, mut must_exit: watch::Receiver<bool>) {
while !*must_exit.borrow() {
match self.updater_loop_iter() {
Ok(true) => (),
Ok(false) => {
select! {
_ = self.data.merkle_todo_notify.notified().fuse() => {},
_ = must_exit.changed().fuse() => {},
}
}
Err(e) => {
warn!(
"({}) Error while updating Merkle tree item: {}",
F::TABLE_NAME,
e
);
tokio::time::sleep(Duration::from_secs(10)).await;
}
}
}
}
fn updater_loop_iter(&self) -> Result<bool, Error> {
if let Some(x) = self.data.merkle_todo.iter()?.next() {
let (key, valhash) = x?;
self.update_item(&key[..], &valhash[..])?;
Ok(true)
} else {
Ok(false)
}
}
fn update_item(&self, k: &[u8], vhash_by: &[u8]) -> Result<(), Error> {
let khash = blake2sum(k);
let new_vhash = if vhash_by.is_empty() {
None
} else {
Some(Hash::try_from(vhash_by).unwrap())
};
let key = MerkleNodeKey {
partition: self
.data
.replication
.partition_of(&Hash::try_from(&k[0..32]).unwrap()),
prefix: vec![],
};
self.data
.merkle_tree
.db()
.transaction(|tx| self.update_item_rec(tx, k, &khash, &key, new_vhash))?;
let deleted = self.data.merkle_todo.db().transaction(|tx| {
let old_val = tx.get(&self.data.merkle_todo, k)?;
match old_val {
Some(ov) if ov == vhash_by => {
tx.remove(&self.data.merkle_todo, k)?;
tx.commit(true)
}
_ => tx.commit(false),
}
})?;
if !deleted {
debug!(
"({}) Item not deleted from Merkle todo because it changed: {:?}",
F::TABLE_NAME,
k
);
}
Ok(())
}
fn update_item_rec(
&self,
tx: db::Transaction<'_>,
k: &[u8],
khash: &Hash,
key: &MerkleNodeKey,
new_vhash: Option<Hash>,
) -> db::TxResult<Option<Hash>, Error> {
let i = key.prefix.len();
// Read node at current position (defined by the prefix stored in key)
// Calculate an update to apply to this node
// This update is an Option<_>, so that it is None if the update is a no-op
// and we can thus skip recalculating and re-storing everything
let mutate = match self.read_node_txn(tx, key)? {
MerkleNode::Empty => new_vhash.map(|vhv| MerkleNode::Leaf(k.to_vec(), vhv)),
MerkleNode::Intermediate(mut children) => {
let key2 = key.next_key(khash);
if let Some(subhash) = self.update_item_rec(tx, k, khash, &key2, new_vhash)? {
// Subtree changed, update this node as well
if subhash == self.empty_node_hash {
intermediate_rm_child(&mut children, key2.prefix[i]);
} else {
intermediate_set_child(&mut children, key2.prefix[i], subhash);
}
if children.is_empty() {
// should not happen
warn!(
"({}) Replacing intermediate node with empty node, should not happen.",
F::TABLE_NAME
);
Some(MerkleNode::Empty)
} else if children.len() == 1 {
// We now have a single node (case when the update deleted one of only two
// children). If that node is a leaf, move it to this level.
let key_sub = key.add_byte(children[0].0);
let subnode = self.read_node_txn(tx, &key_sub)?;
match subnode {
MerkleNode::Empty => {
warn!(
"({}) Single subnode in tree is empty Merkle node",
F::TABLE_NAME
);
Some(MerkleNode::Empty)
}
MerkleNode::Intermediate(_) => Some(MerkleNode::Intermediate(children)),
x @ MerkleNode::Leaf(_, _) => {
tx.remove(&self.data.merkle_tree, key_sub.encode())?;
Some(x)
}
}
} else {
Some(MerkleNode::Intermediate(children))
}
} else {
// Subtree not changed, nothing to do
None
}
}
MerkleNode::Leaf(exlf_k, exlf_vhash) => {
if exlf_k == k {
// This leaf is for the same key that the one we are updating
match new_vhash {
Some(vhv) if vhv == exlf_vhash => None,
Some(vhv) => Some(MerkleNode::Leaf(k.to_vec(), vhv)),
None => Some(MerkleNode::Empty),
}
} else {
// This is an only leaf for another key
if new_vhash.is_some() {
// Move that other key to a subnode, create another subnode for our
// insertion and replace current node by an intermediary node
let mut int = vec![];
let exlf_khash = blake2sum(&exlf_k[..]);
assert_eq!(khash.as_slice()[..i], exlf_khash.as_slice()[..i]);
{
let exlf_subkey = key.next_key(&exlf_khash);
let exlf_sub_hash = self
.update_item_rec(
tx,
&exlf_k[..],
&exlf_khash,
&exlf_subkey,
Some(exlf_vhash),
)?
.unwrap();
intermediate_set_child(&mut int, exlf_subkey.prefix[i], exlf_sub_hash);
assert_eq!(int.len(), 1);
}
{
let key2 = key.next_key(khash);
let subhash = self
.update_item_rec(tx, k, khash, &key2, new_vhash)?
.unwrap();
intermediate_set_child(&mut int, key2.prefix[i], subhash);
if exlf_khash.as_slice()[i] == khash.as_slice()[i] {
assert_eq!(int.len(), 1);
} else {
assert_eq!(int.len(), 2);
}
}
Some(MerkleNode::Intermediate(int))
} else {
// Nothing to do, we don't want to insert this value because it is None,
// and we don't want to change the other value because it's for something
// else
None
}
}
}
};
if let Some(new_node) = mutate {
let hash = self.put_node_txn(tx, key, &new_node)?;
Ok(Some(hash))
} else {
Ok(None)
}
}
// Merkle tree node manipulation
fn read_node_txn(
&self,
tx: db::Transaction<'_>,
k: &MerkleNodeKey,
) -> db::TxResult<MerkleNode, Error> {
let ent = tx.get(&self.data.merkle_tree, k.encode())?;
MerkleNode::decode_opt(ent).map_err(db::TxError::Abort)
}
fn put_node_txn(
&self,
tx: db::Transaction<'_>,
k: &MerkleNodeKey,
v: &MerkleNode,
) -> db::TxResult<Hash, Error> {
trace!("Put Merkle node: {:?} => {:?}", k, v);
if *v == MerkleNode::Empty {
tx.remove(&self.data.merkle_tree, k.encode())?;
Ok(self.empty_node_hash)
} else {
let vby = rmp_to_vec_all_named(v).map_err(|e| db::TxError::Abort(e.into()))?;
let rethash = blake2sum(&vby[..]);
tx.insert(&self.data.merkle_tree, k.encode(), vby)?;
Ok(rethash)
}
}
// Access a node in the Merkle tree, used by the sync protocol
pub(crate) fn read_node(&self, k: &MerkleNodeKey) -> Result<MerkleNode, Error> {
let ent = self.data.merkle_tree.get(k.encode())?;
MerkleNode::decode_opt(ent)
}
pub fn merkle_tree_len(&self) -> usize {
self.data.merkle_tree.len().unwrap() // TODO fix unwrap
}
pub fn todo_len(&self) -> usize {
self.data.merkle_todo.len().unwrap() // TODO fix unwrap
}
}
impl MerkleNodeKey {
fn encode(&self) -> Vec<u8> {
let mut ret = Vec::with_capacity(2 + self.prefix.len());
ret.extend(&u16::to_be_bytes(self.partition)[..]);
ret.extend(&self.prefix[..]);
ret
}
pub fn next_key(&self, h: &Hash) -> Self {
assert_eq!(h.as_slice()[0..self.prefix.len()], self.prefix[..]);
let mut s2 = self.clone();
s2.prefix.push(h.as_slice()[self.prefix.len()]);
s2
}
pub fn add_byte(&self, b: u8) -> Self {
let mut s2 = self.clone();
s2.prefix.push(b);
s2
}
}
impl MerkleNode {
fn decode_opt(ent: Option<db::Value<'_>>) -> Result<Self, Error> {
match ent {
None => Ok(MerkleNode::Empty),
Some(v) => Ok(rmp_serde::decode::from_read_ref::<_, MerkleNode>(&v[..])?),
}
}
pub fn is_empty(&self) -> bool {
*self == MerkleNode::Empty
}
}
fn intermediate_set_child(ch: &mut Vec<(u8, Hash)>, pos: u8, v: Hash) {
for i in 0..ch.len() {
if ch[i].0 == pos {
ch[i].1 = v;
return;
} else if ch[i].0 > pos {
ch.insert(i, (pos, v));
return;
}
}
ch.push((pos, v));
}
fn intermediate_rm_child(ch: &mut Vec<(u8, Hash)>, pos: u8) {
for i in 0..ch.len() {
if ch[i].0 == pos {
ch.remove(i);
return;
}
}
}
#[test]
fn test_intermediate_aux() {
let mut v = vec![];
intermediate_set_child(&mut v, 12u8, [12u8; 32].into());
assert_eq!(v, vec![(12u8, [12u8; 32].into())]);
intermediate_set_child(&mut v, 42u8, [42u8; 32].into());
assert_eq!(
v,
vec![(12u8, [12u8; 32].into()), (42u8, [42u8; 32].into())]
);
intermediate_set_child(&mut v, 4u8, [4u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(12u8, [12u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_set_child(&mut v, 12u8, [8u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(12u8, [8u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_set_child(&mut v, 6u8, [6u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into()),
(42u8, [42u8; 32].into())
]
);
intermediate_rm_child(&mut v, 42u8);
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
intermediate_rm_child(&mut v, 11u8);
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [6u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
intermediate_rm_child(&mut v, 6u8);
assert_eq!(v, vec![(4u8, [4u8; 32].into()), (12u8, [8u8; 32].into())]);
intermediate_set_child(&mut v, 6u8, [7u8; 32].into());
assert_eq!(
v,
vec![
(4u8, [4u8; 32].into()),
(6u8, [7u8; 32].into()),
(12u8, [8u8; 32].into())
]
);
}
|