aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/rpc_helper.rs
blob: 97716b185d9f08ea7832b6609107c41ee7e07bee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//! Contain structs related to making RPCs
use std::sync::Arc;
use std::time::{Duration, SystemTime};

use futures::future::join_all;
use futures::stream::futures_unordered::FuturesUnordered;
use futures::stream::StreamExt;
use futures_util::future::FutureExt;
use tokio::select;
use tokio::sync::{watch, Semaphore};

use opentelemetry::KeyValue;
use opentelemetry::{
	trace::{FutureExt as OtelFutureExt, Span, TraceContextExt, Tracer},
	Context,
};

pub use netapp::endpoint::{Endpoint, EndpointHandler, Message as Rpc};
use netapp::peering::fullmesh::FullMeshPeeringStrategy;
pub use netapp::proto::*;
pub use netapp::{NetApp, NodeID};

use garage_util::background::BackgroundRunner;
use garage_util::data::*;
use garage_util::error::Error;

use crate::metrics::RpcMetrics;
use crate::ring::Ring;

const DEFAULT_TIMEOUT: Duration = Duration::from_secs(10);

// Try to never have more than 200MB of outgoing requests
// buffered at the same time. Other requests are queued until
// space is freed.
const REQUEST_BUFFER_SIZE: usize = 200 * 1024 * 1024;

/// Strategy to apply when making RPC
#[derive(Copy, Clone)]
pub struct RequestStrategy {
	/// Max time to wait for reponse
	pub rs_timeout: Duration,
	/// Min number of response to consider the request successful
	pub rs_quorum: Option<usize>,
	/// Should requests be dropped after enough response are received
	pub rs_interrupt_after_quorum: bool,
	/// Request priority
	pub rs_priority: RequestPriority,
}

impl RequestStrategy {
	/// Create a RequestStrategy with default timeout and not interrupting when quorum reached
	pub fn with_priority(prio: RequestPriority) -> Self {
		RequestStrategy {
			rs_timeout: DEFAULT_TIMEOUT,
			rs_quorum: None,
			rs_interrupt_after_quorum: false,
			rs_priority: prio,
		}
	}
	/// Set quorum to be reached for request
	pub fn with_quorum(mut self, quorum: usize) -> Self {
		self.rs_quorum = Some(quorum);
		self
	}
	/// Set timeout of the strategy
	pub fn with_timeout(mut self, timeout: Duration) -> Self {
		self.rs_timeout = timeout;
		self
	}
	/// Set if requests can be dropped after quorum has been reached
	/// In general true for read requests, and false for write
	pub fn interrupt_after_quorum(mut self, interrupt: bool) -> Self {
		self.rs_interrupt_after_quorum = interrupt;
		self
	}
}

#[derive(Clone)]
pub struct RpcHelper(Arc<RpcHelperInner>);

struct RpcHelperInner {
	our_node_id: Uuid,
	fullmesh: Arc<FullMeshPeeringStrategy>,
	background: Arc<BackgroundRunner>,
	ring: watch::Receiver<Arc<Ring>>,
	request_buffer_semaphore: Arc<Semaphore>,
	metrics: RpcMetrics,
}

impl RpcHelper {
	pub(crate) fn new(
		our_node_id: Uuid,
		fullmesh: Arc<FullMeshPeeringStrategy>,
		background: Arc<BackgroundRunner>,
		ring: watch::Receiver<Arc<Ring>>,
	) -> Self {
		let sem = Arc::new(Semaphore::new(REQUEST_BUFFER_SIZE));

		let metrics = RpcMetrics::new(sem.clone());

		Self(Arc::new(RpcHelperInner {
			our_node_id,
			fullmesh,
			background,
			ring,
			request_buffer_semaphore: sem,
			metrics,
		}))
	}

	pub async fn call<M, H, S>(
		&self,
		endpoint: &Endpoint<M, H>,
		to: Uuid,
		msg: M,
		strat: RequestStrategy,
	) -> Result<S, Error>
	where
		M: Rpc<Response = Result<S, Error>>,
		H: EndpointHandler<M>,
	{
		self.call_arc(endpoint, to, Arc::new(msg), strat).await
	}

	pub async fn call_arc<M, H, S>(
		&self,
		endpoint: &Endpoint<M, H>,
		to: Uuid,
		msg: Arc<M>,
		strat: RequestStrategy,
	) -> Result<S, Error>
	where
		M: Rpc<Response = Result<S, Error>>,
		H: EndpointHandler<M>,
	{
		let queueing_start_time = SystemTime::now();
		let metric_tags = [KeyValue::new("endpoint", endpoint.path().to_string())];

		let msg_size = rmp_to_vec_all_named(&msg)?.len() as u32;
		let permit = self
			.0
			.request_buffer_semaphore
			.acquire_many(msg_size)
			.await?;

		self.0.metrics.rpc_queueing_time.record(
			queueing_start_time
				.elapsed()
				.map_or(0.0, |d| d.as_secs_f64()),
			&metric_tags,
		);
		self.0.metrics.rpc_counter.add(1, &metric_tags);
		let rpc_start_time = SystemTime::now();

		let tracer = opentelemetry::global::tracer("garage");
		let mut span = tracer.start(format!("RPC {}", endpoint.path()));
		span.set_attribute(KeyValue::new("to", format!("{:?}", to)));

		let node_id = to.into();
		let rpc_call = endpoint
			.call(&node_id, &msg, strat.rs_priority)
			.with_context(Context::current_with_span(span));

		select! {
			res = rpc_call => {
				drop(permit);

				if res.is_err() {
					self.0.metrics.rpc_netapp_error_counter.add(1, &metric_tags);
				}
				let res = res?;

				self.0.metrics.rpc_duration
			.record(rpc_start_time.elapsed().map_or(0.0, |d| d.as_secs_f64()), &metric_tags);
				if res.is_err() {
					self.0.metrics.rpc_garage_error_counter.add(1, &metric_tags);
				}

				Ok(res?)
			}
			_ = tokio::time::sleep(strat.rs_timeout) => {
				drop(permit);
				self.0.metrics.rpc_timeout_counter.add(1, &metric_tags);
				Err(Error::Timeout)
			}
		}
	}

	pub async fn call_many<M, H, S>(
		&self,
		endpoint: &Endpoint<M, H>,
		to: &[Uuid],
		msg: M,
		strat: RequestStrategy,
	) -> Vec<(Uuid, Result<S, Error>)>
	where
		M: Rpc<Response = Result<S, Error>>,
		H: EndpointHandler<M>,
	{
		let msg = Arc::new(msg);
		let resps = join_all(
			to.iter()
				.map(|to| self.call_arc(endpoint, *to, msg.clone(), strat)),
		)
		.await;
		to.iter()
			.cloned()
			.zip(resps.into_iter())
			.collect::<Vec<_>>()
	}

	pub async fn broadcast<M, H, S>(
		&self,
		endpoint: &Endpoint<M, H>,
		msg: M,
		strat: RequestStrategy,
	) -> Vec<(Uuid, Result<S, Error>)>
	where
		M: Rpc<Response = Result<S, Error>>,
		H: EndpointHandler<M>,
	{
		let to = self
			.0
			.fullmesh
			.get_peer_list()
			.iter()
			.map(|p| p.id.into())
			.collect::<Vec<_>>();
		self.call_many(endpoint, &to[..], msg, strat).await
	}

	/// Make a RPC call to multiple servers, returning either a Vec of responses,
	/// or an error if quorum could not be reached due to too many errors
	pub async fn try_call_many<M, H, S>(
		&self,
		endpoint: &Arc<Endpoint<M, H>>,
		to: &[Uuid],
		msg: M,
		strategy: RequestStrategy,
	) -> Result<Vec<S>, Error>
	where
		M: Rpc<Response = Result<S, Error>> + 'static,
		H: EndpointHandler<M> + 'static,
		S: Send + 'static,
	{
		let quorum = strategy.rs_quorum.unwrap_or(to.len());

		let tracer = opentelemetry::global::tracer("garage");
		let mut span = tracer.start(format!("RPC {} to {:?}", endpoint.path(), to));
		span.set_attribute(KeyValue::new("to", format!("{:?}", to)));
		span.set_attribute(KeyValue::new("quorum", quorum as i64));

		async {
			let msg = Arc::new(msg);

			// Build future for each request
			// They are not started now: they are added below in a FuturesUnordered
			// object that will take care of polling them (see below)
			let requests = to.iter().cloned().map(|to| {
				let self2 = self.clone();
				let msg = msg.clone();
				let endpoint2 = endpoint.clone();
				(to, async move {
					self2.call_arc(&endpoint2, to, msg, strategy).await
				})
			});

			// Vectors in which success results and errors will be collected
			let mut successes = vec![];
			let mut errors = vec![];

			if strategy.rs_interrupt_after_quorum {
				// Case 1: once quorum is reached, other requests don't matter.
				// What we do here is only send the required number of requests
				// to reach a quorum, priorizing nodes with the lowest latency.
				// When there are errors, we start new requests to compensate.

				// Retrieve some status variables that we will use to sort requests
				let peer_list = self.0.fullmesh.get_peer_list();
				let ring: Arc<Ring> = self.0.ring.borrow().clone();
				let our_zone = match ring.layout.node_role(&self.0.our_node_id) {
					Some(pc) => &pc.zone,
					None => "",
				};

				// Augment requests with some information used to sort them.
				// The tuples are as follows:
				//         (is another node?, is another zone?, latency, node ID, request future)
				// We store all of these tuples in a vec that we can sort.
				// By sorting this vec, we priorize ourself, then nodes in the same zone,
				// and within a same zone we priorize nodes with the lowest latency.
				let mut requests = requests
					.map(|(to, fut)| {
						let peer_zone = match ring.layout.node_role(&to) {
							Some(pc) => &pc.zone,
							None => "",
						};
						let peer_avg_ping = peer_list
							.iter()
							.find(|x| x.id.as_ref() == to.as_slice())
							.map(|pi| pi.avg_ping)
							.flatten()
							.unwrap_or_else(|| Duration::from_secs(1));
						(
							to != self.0.our_node_id,
							peer_zone != our_zone,
							peer_avg_ping,
							to,
							fut,
						)
					})
					.collect::<Vec<_>>();

				// Sort requests by (priorize ourself, priorize same zone, priorize low latency)
				requests.sort_by_key(|(diffnode, diffzone, ping, _to, _fut)| {
					(*diffnode, *diffzone, *ping)
				});

				// Make an iterator to take requests in their sorted order
				let mut requests = requests.into_iter();

				// resp_stream will contain all of the requests that are currently in flight.
				// (for the moment none, they will be added in the loop below)
				let mut resp_stream = FuturesUnordered::new();

				// Do some requests and collect results
				'request_loop: while successes.len() < quorum {
					// If the current set of requests that are running is not enough to possibly
					// reach quorum, start some new requests.
					while successes.len() + resp_stream.len() < quorum {
						if let Some((_, _, _, req_to, fut)) = requests.next() {
							let tracer = opentelemetry::global::tracer("garage");
							let span = tracer.start(format!("RPC to {:?}", req_to));
							resp_stream.push(tokio::spawn(
								fut.with_context(Context::current_with_span(span)),
							));
						} else {
							// If we have no request to add, we know that we won't ever
							// reach quorum: bail out now.
							break 'request_loop;
						}
					}
					assert!(!resp_stream.is_empty()); // because of loop invariants

					// Wait for one request to terminate
					match resp_stream.next().await.unwrap().unwrap() {
						Ok(msg) => {
							successes.push(msg);
						}
						Err(e) => {
							errors.push(e);
						}
					}
				}
			} else {
				// Case 2: all of the requests need to be sent in all cases,
				// and need to terminate. (this is the case for writes that
				// must be spread to n nodes)
				// Just start all the requests in parallel and return as soon
				// as the quorum is reached.
				let mut resp_stream = requests
					.map(|(_, fut)| fut)
					.collect::<FuturesUnordered<_>>();

				while let Some(resp) = resp_stream.next().await {
					match resp {
						Ok(msg) => {
							successes.push(msg);
							if successes.len() >= quorum {
								break;
							}
						}
						Err(e) => {
							errors.push(e);
						}
					}
				}

				if !resp_stream.is_empty() {
					// Continue remaining requests in background.
					// Continue the remaining requests immediately using tokio::spawn
					// but enqueue a task in the background runner
					// to ensure that the process won't exit until the requests are done
					// (if we had just enqueued the resp_stream.collect directly in the background runner,
					// the requests might have been put on hold in the background runner's queue,
					// in which case they might timeout or otherwise fail)
					let wait_finished_fut = tokio::spawn(async move {
						resp_stream.collect::<Vec<Result<_, _>>>().await;
					});
					self.0.background.spawn(wait_finished_fut.map(|_| Ok(())));
				}
			}

			if successes.len() >= quorum {
				Ok(successes)
			} else {
				let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>();
				Err(Error::Quorum(quorum, successes.len(), to.len(), errors))
			}
		}
		.with_context(Context::current_with_span(span))
		.await
	}
}