aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/ring.rs
blob: a89b730cc1a660fed9be8eeacf13ac7cafb808b2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use std::collections::{HashMap, HashSet};
use std::convert::TryInto;

use serde::{Deserialize, Serialize};

use garage_util::data::*;

// TODO: make this constant parametrizable in the config file
// For deployments with many nodes it might make sense to bump
// it up to 10.
// Maximum value : 16
pub const PARTITION_BITS: usize = 8;

const PARTITION_MASK_U16: u16 = ((1 << PARTITION_BITS) - 1) << (16 - PARTITION_BITS);

// TODO: make this constant paraetrizable in the config file
// (most deployments use a replication factor of 3, so...)
pub const MAX_REPLICATION: usize = 3;

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct NetworkConfig {
	pub members: HashMap<UUID, NetworkConfigEntry>,
	pub version: u64,
}

impl NetworkConfig {
	pub(crate) fn new() -> Self {
		Self {
			members: HashMap::new(),
			version: 0,
		}
	}
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct NetworkConfigEntry {
	pub datacenter: String,
	pub capacity: u32,
	pub tag: String,
}

#[derive(Clone)]
pub struct Ring {
	pub config: NetworkConfig,
	pub ring: Vec<RingEntry>,
}

#[derive(Clone, Debug)]
pub struct RingEntry {
	pub location: Hash,
	pub nodes: [UUID; MAX_REPLICATION],
}

impl Ring {
	pub(crate) fn new(config: NetworkConfig) -> Self {
		// Create a vector of partition indices (0 to 2**PARTITION_BITS-1)
		let partitions_idx = (0usize..(1usize << PARTITION_BITS)).collect::<Vec<_>>();

		let datacenters = config
			.members
			.iter()
			.map(|(_id, info)| info.datacenter.as_str())
			.collect::<HashSet<&str>>();
		let n_datacenters = datacenters.len();

		// Prepare ring
		let mut partitions: Vec<Vec<(&UUID, &NetworkConfigEntry)>> = partitions_idx
			.iter()
			.map(|_i| Vec::new())
			.collect::<Vec<_>>();

		// Create MagLev priority queues for each node
		let mut queues = config
			.members
			.iter()
			.map(|(node_id, node_info)| {
				let mut parts = partitions_idx
					.iter()
					.map(|i| {
						let part_data =
							[&u16::to_be_bytes(*i as u16)[..], node_id.as_slice()].concat();
						(*i, fasthash(&part_data[..]))
					})
					.collect::<Vec<_>>();
				parts.sort_by_key(|(_i, h)| *h);
				let parts_i = parts.iter().map(|(i, _h)| *i).collect::<Vec<_>>();
				(node_id, node_info, parts_i, 0)
			})
			.collect::<Vec<_>>();

		let max_capacity = config
			.members
			.iter()
			.map(|(_, node_info)| node_info.capacity)
			.fold(0, std::cmp::max);

		// Fill up ring
		for rep in 0..MAX_REPLICATION {
			queues.sort_by_key(|(ni, _np, _q, _p)| {
				let queue_data = [&u16::to_be_bytes(rep as u16)[..], ni.as_slice()].concat();
				fasthash(&queue_data[..])
			});

			for (_, _, _, pos) in queues.iter_mut() {
				*pos = 0;
			}

			let mut remaining = partitions_idx.len();
			while remaining > 0 {
				let remaining0 = remaining;
				for i_round in 0..max_capacity {
					for (node_id, node_info, q, pos) in queues.iter_mut() {
						if i_round >= node_info.capacity {
							continue;
						}
						for pos2 in *pos..q.len() {
							let qv = q[pos2];
							if partitions[qv].len() != rep {
								continue;
							}
							let p_dcs = partitions[qv]
								.iter()
								.map(|(_id, info)| info.datacenter.as_str())
								.collect::<HashSet<&str>>();
							if (p_dcs.len() < n_datacenters
								&& !p_dcs.contains(&node_info.datacenter.as_str()))
								|| (p_dcs.len() == n_datacenters
									&& !partitions[qv].iter().any(|(id, _i)| id == node_id))
							{
								partitions[qv].push((node_id, node_info));
								remaining -= 1;
								*pos = pos2 + 1;
								break;
							}
						}
					}
				}
				if remaining == remaining0 {
					// No progress made, exit
					warn!("Could not build ring, not enough nodes configured.");
					return Self {
						config,
						ring: vec![],
					};
				}
			}
		}

		let ring = partitions
			.iter()
			.enumerate()
			.map(|(i, nodes)| {
				let top = (i as u16) << (16 - PARTITION_BITS);
				let mut hash = [0u8; 32];
				hash[0..2].copy_from_slice(&u16::to_be_bytes(top)[..]);
				let nodes = nodes.iter().map(|(id, _info)| **id).collect::<Vec<UUID>>();
				RingEntry {
					location: hash.into(),
					nodes: nodes.try_into().unwrap(),
				}
			})
			.collect::<Vec<_>>();

		// eprintln!("RING: --");
		// for e in ring.iter() {
		// 	eprintln!("{:?}", e);
		// }
		// eprintln!("END --");

		Self { config, ring }
	}

	pub fn walk_ring(&self, from: &Hash, n: usize) -> Vec<UUID> {
		if self.ring.len() != 1 << PARTITION_BITS {
			warn!("Ring not yet ready, read/writes will be lost!");
			return vec![];
		}

		let top = u16::from_be_bytes(from.as_slice()[0..2].try_into().unwrap());

		let partition_idx = (top >> (16 - PARTITION_BITS)) as usize;
		let partition = &self.ring[partition_idx];

		let partition_top =
			u16::from_be_bytes(partition.location.as_slice()[0..2].try_into().unwrap());
		assert_eq!(partition_top & PARTITION_MASK_U16, top & PARTITION_MASK_U16);

		assert!(n <= partition.nodes.len());
		partition.nodes[..n].iter().cloned().collect::<Vec<_>>()
	}
}