aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/layout.rs
blob: 40f97368935ddb540e6e42ea9bf6101329b04e1c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
use std::cmp::min;
use std::cmp::Ordering;
use std::collections::HashMap;

use serde::{Deserialize, Serialize};

use garage_util::bipartite::*;
use garage_util::crdt::{AutoCrdt, Crdt, LwwMap};
use garage_util::data::*;

use rand::prelude::SliceRandom;

use crate::ring::*;

/// The layout of the cluster, i.e. the list of roles
/// which are assigned to each cluster node
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ClusterLayout {
	pub version: u64,

	pub replication_factor: usize,
	pub roles: LwwMap<Uuid, NodeRoleV>,

	/// node_id_vec: a vector of node IDs with a role assigned
	/// in the system (this includes gateway nodes).
	/// The order here is different than the vec stored by `roles`, because:
	/// 1. non-gateway nodes are first so that they have lower numbers
	/// 2. nodes that don't have a role are excluded (but they need to
	///    stay in the CRDT as tombstones)
	pub node_id_vec: Vec<Uuid>,
	/// the assignation of data partitions to node, the values
	/// are indices in node_id_vec
	#[serde(with = "serde_bytes")]
	pub ring_assignation_data: Vec<CompactNodeType>,

	/// Role changes which are staged for the next version of the layout
	pub staging: LwwMap<Uuid, NodeRoleV>,
	pub staging_hash: Hash,
}

#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRoleV(pub Option<NodeRole>);

impl AutoCrdt for NodeRoleV {
	const WARN_IF_DIFFERENT: bool = true;
}

/// The user-assigned roles of cluster nodes
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRole {
	/// Datacenter at which this entry belong. This information might be used to perform a better
	/// geodistribution
	pub zone: String,
	/// The (relative) capacity of the node
	/// If this is set to None, the node does not participate in storing data for the system
	/// and is only active as an API gateway to other nodes
	pub capacity: Option<u32>,
	/// A set of tags to recognize the node
	pub tags: Vec<String>,
}

impl NodeRole {
	pub fn capacity_string(&self) -> String {
		match self.capacity {
			Some(c) => format!("{}", c),
			None => "gateway".to_string(),
		}
	}
}

impl ClusterLayout {
	pub fn new(replication_factor: usize) -> Self {
		let empty_lwwmap = LwwMap::new();
		let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]);

		ClusterLayout {
			version: 0,
			replication_factor,
			roles: LwwMap::new(),
			node_id_vec: Vec::new(),
			ring_assignation_data: Vec::new(),
			staging: empty_lwwmap,
			staging_hash: empty_lwwmap_hash,
		}
	}

	pub fn merge(&mut self, other: &ClusterLayout) -> bool {
		match other.version.cmp(&self.version) {
			Ordering::Greater => {
				*self = other.clone();
				true
			}
			Ordering::Equal => {
				self.staging.merge(&other.staging);

				let new_staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
				let changed = new_staging_hash != self.staging_hash;

				self.staging_hash = new_staging_hash;

				changed
			}
			Ordering::Less => false,
		}
	}

	/// Returns a list of IDs of nodes that currently have
	/// a role in the cluster
	pub fn node_ids(&self) -> &[Uuid] {
		&self.node_id_vec[..]
	}

	pub fn num_nodes(&self) -> usize {
		self.node_id_vec.len()
	}

	/// Returns the role of a node in the layout
	pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
		match self.roles.get(node) {
			Some(NodeRoleV(Some(v))) => Some(v),
			_ => None,
		}
	}

	/// Check a cluster layout for internal consistency
	/// returns true if consistent, false if error
	pub fn check(&self) -> bool {
		// Check that the hash of the staging data is correct
		let staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
		if staging_hash != self.staging_hash {
			return false;
		}

		// Check that node_id_vec contains the correct list of nodes
		let mut expected_nodes = self
			.roles
			.items()
			.iter()
			.filter(|(_, _, v)| v.0.is_some())
			.map(|(id, _, _)| *id)
			.collect::<Vec<_>>();
		expected_nodes.sort();
		let mut node_id_vec = self.node_id_vec.clone();
		node_id_vec.sort();
		if expected_nodes != node_id_vec {
			return false;
		}

		// Check that the assignation data has the correct length
		if self.ring_assignation_data.len() != (1 << PARTITION_BITS) * self.replication_factor {
			return false;
		}

		// Check that the assigned nodes are correct identifiers
		// of nodes that are assigned a role
		// and that role is not the role of a gateway nodes
		for x in self.ring_assignation_data.iter() {
			if *x as usize >= self.node_id_vec.len() {
				return false;
			}
			let node = self.node_id_vec[*x as usize];
			match self.roles.get(&node) {
				Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
				_ => return false,
			}
		}

		true
	}

	/// This function calculates a new partition-to-node assignation.
	/// The computed assignation maximizes the capacity of a
	/// partition (assuming all partitions have the same size).
	/// Among such optimal assignation, it minimizes the distance to
	/// the former assignation (if any) to minimize the amount of
	/// data to be moved. A heuristic ensures node triplets
	/// dispersion (in garage_util::bipartite::optimize_matching()).
	pub fn calculate_partition_assignation(&mut self) -> bool {
		//The nodes might have been updated, some might have been deleted.
		//So we need to first update the list of nodes and retrieve the
		//assignation.
		let old_node_assignation = self.update_nodes_and_ring();

		let (node_zone, _) = self.get_node_zone_capacity();

		//We compute the optimal number of partition to assign to
		//every node and zone.
		if let Some((part_per_nod, part_per_zone)) = self.optimal_proportions() {
			//We collect part_per_zone in a vec to not rely on the
			//arbitrary order in which elements are iterated in
			//Hashmap::iter()
			let part_per_zone_vec = part_per_zone
				.iter()
				.map(|(x, y)| (x.clone(), *y))
				.collect::<Vec<(String, usize)>>();
			//We create an indexing of the zones
			let mut zone_id = HashMap::<String, usize>::new();
			for (i, ppz) in part_per_zone_vec.iter().enumerate() {
				zone_id.insert(ppz.0.clone(), i);
			}

			//We compute a candidate for the new partition to zone
			//assignation.
			let nb_zones = part_per_zone.len();
			let nb_nodes = part_per_nod.len();
			let nb_partitions = 1 << PARTITION_BITS;
			let left_cap_vec = vec![self.replication_factor as u32; nb_partitions];
			let right_cap_vec = part_per_zone_vec.iter().map(|(_, y)| *y as u32).collect();
			let mut zone_assignation = dinic_compute_matching(left_cap_vec, right_cap_vec);

			//We create the structure for the partition-to-node assignation.
			let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions];
			//We will decrement part_per_nod to keep track of the number
			//of partitions that we still have to associate.
			let mut part_per_nod = part_per_nod;

			//We minimize the distance to the former assignation(if any)

			//We get the id of the zones of the former assignation
			//(and the id no_zone if there is no node assignated)
			let no_zone = part_per_zone_vec.len();
			let old_zone_assignation: Vec<Vec<usize>> = old_node_assignation
				.iter()
				.map(|x| {
					x.iter()
						.map(|id| match *id {
							Some(i) => zone_id[&node_zone[i]],
							None => no_zone,
						})
						.collect()
				})
				.collect();

			//We minimize the distance to the former zone assignation
			zone_assignation =
				optimize_matching(&old_zone_assignation, &zone_assignation, nb_zones + 1); //+1 for no_zone

			//We need to assign partitions to nodes in their zone
			//We first put the nodes assignation that can stay the same
			for i in 0..nb_partitions {
				for j in 0..self.replication_factor {
					if let Some(Some(former_node)) = old_node_assignation[i].iter().find(|x| {
						if let Some(id) = x {
							zone_id[&node_zone[*id]] == zone_assignation[i][j]
						} else {
							false
						}
					}) {
						if part_per_nod[*former_node] > 0 {
							node_assignation[i][j] = Some(*former_node);
							part_per_nod[*former_node] -= 1;
						}
					}
				}
			}

			//We complete the assignation of partitions to nodes
			let mut rng = rand::thread_rng();
			for i in 0..nb_partitions {
				for j in 0..self.replication_factor {
					if node_assignation[i][j] == None {
						let possible_nodes: Vec<usize> = (0..nb_nodes)
							.filter(|id| {
								zone_id[&node_zone[*id]] == zone_assignation[i][j]
									&& part_per_nod[*id] > 0
							})
							.collect();
						assert!(!possible_nodes.is_empty());
						//We randomly pick a node
						if let Some(nod) = possible_nodes.choose(&mut rng) {
							node_assignation[i][j] = Some(*nod);
							part_per_nod[*nod] -= 1;
						}
					}
				}
			}

			//We write the assignation in the 1D table
			self.ring_assignation_data = Vec::<CompactNodeType>::new();
			for ass in node_assignation {
				for nod in ass {
					if let Some(id) = nod {
						self.ring_assignation_data.push(id as CompactNodeType);
					} else {
						panic!()
					}
				}
			}

			true
		} else {
			false
		}
	}

	/// The LwwMap of node roles might have changed. This function updates the node_id_vec
	/// and returns the assignation given by ring, with the new indices of the nodes, and
	/// None of the node is not present anymore.
	/// We work with the assumption that only this function and calculate_new_assignation
	/// do modify assignation_ring and node_id_vec.
	fn update_nodes_and_ring(&mut self) -> Vec<Vec<Option<usize>>> {
		let nb_partitions = 1usize << PARTITION_BITS;
		let mut node_assignation = vec![vec![None; self.replication_factor]; nb_partitions];
		let rf = self.replication_factor;
		let ring = &self.ring_assignation_data;

		let new_node_id_vec: Vec<Uuid> = self.roles.items().iter().map(|(k, _, _)| *k).collect();

		if ring.len() == rf * nb_partitions {
			for i in 0..nb_partitions {
				for j in 0..self.replication_factor {
					node_assignation[i][j] = new_node_id_vec
						.iter()
						.position(|id| *id == self.node_id_vec[ring[i * rf + j] as usize]);
				}
			}
		}

		self.node_id_vec = new_node_id_vec;
		self.ring_assignation_data = vec![];
		node_assignation
	}

	///This function compute the number of partition to assign to
	///every node and zone, so that every partition is replicated
	///self.replication_factor times and the capacity of a partition
	///is maximized.
	fn optimal_proportions(&mut self) -> Option<(Vec<usize>, HashMap<String, usize>)> {
		let mut zone_capacity: HashMap<String, u32> = HashMap::new();

		let (node_zone, node_capacity) = self.get_node_zone_capacity();
		let nb_nodes = self.node_id_vec.len();

		for i in 0..nb_nodes {
			if zone_capacity.contains_key(&node_zone[i]) {
				zone_capacity.insert(
					node_zone[i].clone(),
					zone_capacity[&node_zone[i]] + node_capacity[i],
				);
			} else {
				zone_capacity.insert(node_zone[i].clone(), node_capacity[i]);
			}
		}

		//Compute the optimal number of partitions per zone
		let sum_capacities: u32 = zone_capacity.values().sum();

		if sum_capacities == 0 {
			println!("No storage capacity in the network.");
			return None;
		}

		let nb_partitions = 1 << PARTITION_BITS;

		//Initially we would like to use zones porportionally to
		//their capacity.
		//However, a large zone can be associated to at most
		//nb_partitions to ensure replication of the date.
		//So we take the min with nb_partitions:
		let mut part_per_zone: HashMap<String, usize> = zone_capacity
			.iter()
			.map(|(k, v)| {
				(
					k.clone(),
					min(
						nb_partitions,
						(self.replication_factor * nb_partitions * *v as usize)
							/ sum_capacities as usize,
					),
				)
			})
			.collect();

		//The replication_factor-1 upper bounds the number of
		//part_per_zones that are greater than nb_partitions
		for _ in 1..self.replication_factor {
			//The number of partitions that are not assignated to
			//a zone that takes nb_partitions.
			let sum_capleft: u32 = zone_capacity
				.keys()
				.filter(|k| part_per_zone[*k] < nb_partitions)
				.map(|k| zone_capacity[k])
				.sum();

			//The number of replication of the data that we need
			//to ensure.
			let repl_left = self.replication_factor
				- part_per_zone
					.values()
					.filter(|x| **x == nb_partitions)
					.count();
			if repl_left == 0 {
				break;
			}

			for k in zone_capacity.keys() {
				if part_per_zone[k] != nb_partitions {
					part_per_zone.insert(
						k.to_string(),
						min(
							nb_partitions,
							(nb_partitions * zone_capacity[k] as usize * repl_left)
								/ sum_capleft as usize,
						),
					);
				}
			}
		}

		//Now we divide the zone's partition share proportionally
		//between their nodes.

		let mut part_per_nod: Vec<usize> = (0..nb_nodes)
			.map(|i| {
				(part_per_zone[&node_zone[i]] * node_capacity[i] as usize)
					/ zone_capacity[&node_zone[i]] as usize
			})
			.collect();

		//We must update the part_per_zone to make it correspond to
		//part_per_nod (because of integer rounding)
		part_per_zone = part_per_zone.iter().map(|(k, _)| (k.clone(), 0)).collect();
		for i in 0..nb_nodes {
			part_per_zone.insert(
				node_zone[i].clone(),
				part_per_zone[&node_zone[i]] + part_per_nod[i],
			);
		}

		//Because of integer rounding, the total sum of part_per_nod
		//might not be replication_factor*nb_partitions.
		// We need at most to add 1 to every non maximal value of
		// part_per_nod. The capacity of a partition will be bounded
		// by the minimal value of
		// node_capacity_vec[i]/part_per_nod[i]
		// so we try to maximize this minimal value, keeping the
		// part_per_zone capped

		let discrepancy: usize =
			nb_partitions * self.replication_factor - part_per_nod.iter().sum::<usize>();

		//We use a stupid O(N^2) algorithm. If the number of nodes
		//is actually expected to be high, one should optimize this.

		for _ in 0..discrepancy {
			if let Some(idmax) = (0..nb_nodes)
				.filter(|i| part_per_zone[&node_zone[*i]] < nb_partitions)
				.max_by(|i, j| {
					(node_capacity[*i] * (part_per_nod[*j] + 1) as u32)
						.cmp(&(node_capacity[*j] * (part_per_nod[*i] + 1) as u32))
				}) {
				part_per_nod[idmax] += 1;
				part_per_zone.insert(
					node_zone[idmax].clone(),
					part_per_zone[&node_zone[idmax]] + 1,
				);
			}
		}

		//We check the algorithm consistency

		let discrepancy: usize =
			nb_partitions * self.replication_factor - part_per_nod.iter().sum::<usize>();
		assert!(discrepancy == 0);
		assert!(if let Some(v) = part_per_zone.values().max() {
			*v <= nb_partitions
		} else {
			false
		});

		Some((part_per_nod, part_per_zone))
	}

	//Returns vectors of zone and capacity; indexed by the same (temporary)
	//indices as node_id_vec.
	fn get_node_zone_capacity(&self) -> (Vec<String>, Vec<u32>) {
		let node_zone = self
			.node_id_vec
			.iter()
			.map(|id_nod| match self.node_role(id_nod) {
				Some(NodeRole {
					zone,
					capacity: _,
					tags: _,
				}) => zone.clone(),
				_ => "".to_string(),
			})
			.collect();

		let node_capacity = self
			.node_id_vec
			.iter()
			.map(|id_nod| match self.node_role(id_nod) {
				Some(NodeRole {
					zone: _,
					capacity: Some(c),
					tags: _,
				}) => *c,
				_ => 0,
			})
			.collect();

		(node_zone, node_capacity)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use itertools::Itertools;

	fn check_assignation(cl: &ClusterLayout) {
		//Check that input data has the right format
		let nb_partitions = 1usize << PARTITION_BITS;
		assert!([1, 2, 3].contains(&cl.replication_factor));
		assert!(cl.ring_assignation_data.len() == nb_partitions * cl.replication_factor);

		let (node_zone, node_capacity) = cl.get_node_zone_capacity();

		//Check that is is a correct assignation with zone redundancy
		let rf = cl.replication_factor;
		for i in 0..nb_partitions {
			assert!(
				rf == cl.ring_assignation_data[rf * i..rf * (i + 1)]
					.iter()
					.map(|nod| node_zone[*nod as usize].clone())
					.unique()
					.count()
			);
		}

		let nb_nodes = cl.node_id_vec.len();
		//Check optimality
		let node_nb_part = (0..nb_nodes)
			.map(|i| {
				cl.ring_assignation_data
					.iter()
					.filter(|x| **x == i as u8)
					.count()
			})
			.collect::<Vec<_>>();

		let zone_vec = node_zone.iter().unique().collect::<Vec<_>>();
		let zone_nb_part = zone_vec
			.iter()
			.map(|z| {
				cl.ring_assignation_data
					.iter()
					.filter(|x| node_zone[**x as usize] == **z)
					.count()
			})
			.collect::<Vec<_>>();

		//Check optimality of the zone assignation : would it be better for the
		//node_capacity/node_partitions ratio to change the assignation of a partition

		if let Some(idmin) = (0..nb_nodes).min_by(|i, j| {
			(node_capacity[*i] * node_nb_part[*j] as u32)
				.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
		}) {
			if let Some(idnew) = (0..nb_nodes)
				.filter(|i| {
					if let Some(p) = zone_vec.iter().position(|z| **z == node_zone[*i]) {
						zone_nb_part[p] < nb_partitions
					} else {
						false
					}
				})
				.max_by(|i, j| {
					(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
						.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
				}) {
				assert!(
					node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
						>= node_capacity[idnew] * node_nb_part[idmin] as u32
				);
			}
		}

		//In every zone, check optimality of the nod assignation
		for z in zone_vec {
			let node_of_z_iter = (0..nb_nodes).filter(|id| node_zone[*id] == *z);
			if let Some(idmin) = node_of_z_iter.clone().min_by(|i, j| {
				(node_capacity[*i] * node_nb_part[*j] as u32)
					.cmp(&(node_capacity[*j] * node_nb_part[*i] as u32))
			}) {
				if let Some(idnew) = node_of_z_iter.min_by(|i, j| {
					(node_capacity[*i] * (node_nb_part[*j] as u32 + 1))
						.cmp(&(node_capacity[*j] * (node_nb_part[*i] as u32 + 1)))
				}) {
					assert!(
						node_capacity[idmin] * (node_nb_part[idnew] as u32 + 1)
							>= node_capacity[idnew] * node_nb_part[idmin] as u32
					);
				}
			}
		}
	}

	fn update_layout(
		cl: &mut ClusterLayout,
		node_id_vec: &Vec<u8>,
		node_capacity_vec: &Vec<u32>,
		node_zone_vec: &Vec<String>,
	) {
		for i in 0..node_id_vec.len() {
			if let Some(x) = FixedBytes32::try_from(&[i as u8; 32]) {
				cl.node_id_vec.push(x);
			}

			let update = cl.roles.update_mutator(
				cl.node_id_vec[i],
				NodeRoleV(Some(NodeRole {
					zone: (node_zone_vec[i].to_string()),
					capacity: (Some(node_capacity_vec[i])),
					tags: (vec![]),
				})),
			);
			cl.roles.merge(&update);
		}
	}

	#[test]
	fn test_assignation() {
		let mut node_id_vec = vec![1, 2, 3];
		let mut node_capacity_vec = vec![4000, 1000, 2000];
		let mut node_zone_vec = vec!["A", "B", "C"]
			.into_iter()
			.map(|x| x.to_string())
			.collect();

		let mut cl = ClusterLayout {
			node_id_vec: vec![],

			roles: LwwMap::new(),

			replication_factor: 3,
			ring_assignation_data: vec![],
			version: 0,
			staging: LwwMap::new(),
			staging_hash: sha256sum(&[1; 32]),
		};
		update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
		cl.calculate_partition_assignation();
		check_assignation(&cl);

		node_id_vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
		node_capacity_vec = vec![4000, 1000, 1000, 3000, 1000, 1000, 2000, 10000, 2000];
		node_zone_vec = vec!["A", "B", "C", "C", "C", "B", "G", "H", "I"]
			.into_iter()
			.map(|x| x.to_string())
			.collect();
		update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
		cl.calculate_partition_assignation();
		check_assignation(&cl);

		node_capacity_vec = vec![4000, 1000, 2000, 7000, 1000, 1000, 2000, 10000, 2000];
		update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
		cl.calculate_partition_assignation();
		check_assignation(&cl);

		node_capacity_vec = vec![4000, 4000, 2000, 7000, 1000, 9000, 2000, 10, 2000];
		update_layout(&mut cl, &node_id_vec, &node_capacity_vec, &node_zone_vec);
		cl.calculate_partition_assignation();
		check_assignation(&cl);
	}
}