aboutsummaryrefslogtreecommitdiff
path: root/src/rpc/graph_algo.rs
blob: 70ccf35ad013314fe249f749bbd173ecab9dd644 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
//! This module deals with graph algorithms.
//! It is used in layout.rs to build the partition to node assignation.

use rand::prelude::SliceRandom;
use std::cmp::{max, min};
use std::collections::VecDeque;
use std::collections::HashMap;

//Vertex data structures used in all the graphs used in layout.rs.
//usize parameters correspond to node/zone/partitions ids.
//To understand the vertex roles below, please refer to the formal description
//of the layout computation algorithm.
#[derive(Clone,Copy,Debug, PartialEq, Eq, Hash)]
pub enum Vertex{
    Source,
    Pup(usize),         //The vertex p+ of partition p
    Pdown(usize),       //The vertex p- of partition p
    PZ(usize,usize),    //The vertex corresponding to x_(partition p, zone z)
    N(usize),           //The vertex corresponding to node n
    Sink
}


//Edge data structure for the flow algorithm.
//The graph is stored as an adjacency list
#[derive(Clone, Copy, Debug)]
pub struct FlowEdge {
	cap: u32,     //flow maximal capacity of the edge
	flow: i32,  //flow value on the edge
	dest: usize,  //destination vertex id  
	rev: usize, //index of the reversed edge (v, self) in the edge list of vertex v
}

//Edge data structure for the detection of negative cycles.
//The graph is stored as a list of edges (u,v).
#[derive(Clone, Copy, Debug)]
pub struct WeightedEdge {
	w: i32,     //weight of the edge
	dest: usize,
}

pub trait Edge: Clone + Copy {}
impl Edge for FlowEdge {}
impl Edge for WeightedEdge {}

//Struct for the graph structure. We do encapsulation here to be able to both
//provide user friendly Vertex enum to address vertices, and to use usize indices
//and Vec instead of HashMap in the graph algorithm to optimize execution speed.
pub struct Graph<E : Edge>{
    vertextoid : HashMap<Vertex , usize>,
    idtovertex : Vec<Vertex>,
    
    graph : Vec< Vec<E> >
}

pub type CostFunction = HashMap<(Vertex,Vertex), i32>;

impl<E : Edge> Graph<E>{
    pub fn new(vertices : &[Vertex]) -> Self {
        let mut map = HashMap::<Vertex, usize>::new();
        for (i, vert) in vertices.iter().enumerate(){
            map.insert(*vert , i);
        }
        Graph::<E> {
                vertextoid : map,
                idtovertex: vertices.to_vec(),
                graph : vec![Vec::< E >::new(); vertices.len() ]
            }
    }
}

impl Graph<FlowEdge>{
    //This function adds a directed edge to the graph with capacity c, and the
    //corresponding reversed edge with capacity 0.
    pub fn add_edge(&mut self, u: Vertex, v:Vertex, c: u32) -> Result<(), String>{
        if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
            return Err("The graph does not contain the provided vertex.".to_string());
        }
        let idu = self.vertextoid[&u];
        let idv = self.vertextoid[&v];
        let rev_u = self.graph[idu].len();
        let rev_v = self.graph[idv].len();
        self.graph[idu].push( FlowEdge{cap: c , dest: idv , flow: 0, rev : rev_v} );
        self.graph[idv].push( FlowEdge{cap: 0 , dest: idu , flow: 0, rev : rev_u} );
        Ok(())
    }
    
    //This function returns the list of vertices that receive a positive flow from
    //vertex v.
    pub fn get_positive_flow_from(&self , v:Vertex) -> Result< Vec<Vertex> , String>{
        if !self.vertextoid.contains_key(&v) {
            return Err("The graph does not contain the provided vertex.".to_string());
        }
        let idv = self.vertextoid[&v];
        let mut result = Vec::<Vertex>::new();
        for edge in self.graph[idv].iter() {
            if edge.flow > 0 {
                result.push(self.idtovertex[edge.dest]);
            }
        }
        Ok(result)
    }
    
    
    //This function returns the value of the flow incoming to v.
    pub fn get_inflow(&self , v:Vertex) -> Result< i32 , String>{
        if !self.vertextoid.contains_key(&v) {
            return Err("The graph does not contain the provided vertex.".to_string());
        }
        let idv = self.vertextoid[&v];
        let mut result = 0;
        for edge in self.graph[idv].iter() {
            result += max(0,self.graph[edge.dest][edge.rev].flow);
        }
        Ok(result)
    }

    //This function returns the value of the flow outgoing from v.
    pub fn get_outflow(&self , v:Vertex) -> Result< i32 , String>{
        if !self.vertextoid.contains_key(&v) {
            return Err("The graph does not contain the provided vertex.".to_string());
        }
        let idv = self.vertextoid[&v];
        let mut result = 0;
        for edge in self.graph[idv].iter() {
            result += max(0,edge.flow);
        }
        Ok(result)
    }

    //This function computes the flow total value by computing the outgoing flow
    //from the source.
    pub fn get_flow_value(&mut self) -> Result<i32, String> {
        self.get_outflow(Vertex::Source)
    }

    //This function shuffles the order of the edge lists. It keeps the ids of the
    //reversed edges consistent.
    fn shuffle_edges(&mut self) {
        let mut rng = rand::thread_rng();
        for i in 0..self.graph.len() {
            self.graph[i].shuffle(&mut rng);
            //We need to update the ids of the reverse edges.
            for j in 0..self.graph[i].len() {
                let target_v = self.graph[i][j].dest;
                let target_rev = self.graph[i][j].rev;
                self.graph[target_v][target_rev].rev = j;
            }
        }
    }

    //Computes an upper bound of the flow n the graph
    pub fn flow_upper_bound(&self) -> u32{
        let idsource = self.vertextoid[&Vertex::Source];
        let mut flow_upper_bound = 0;
        for edge in self.graph[idsource].iter(){
            flow_upper_bound += edge.cap;
        }
        flow_upper_bound
    }
    
    //This function computes the maximal flow using Dinic's algorithm. It starts with
    //the flow values already present in the graph. So it is possible to add some edge to
    //the graph, compute a flow, add other edges, update the flow.
    pub fn compute_maximal_flow(&mut self) -> Result<(), String> {
        if !self.vertextoid.contains_key(&Vertex::Source) { 
            return Err("The graph does not contain a source.".to_string());
        }
        if !self.vertextoid.contains_key(&Vertex::Sink) { 
            return Err("The graph does not contain a sink.".to_string());
        }

        let idsource = self.vertextoid[&Vertex::Source];
        let idsink = self.vertextoid[&Vertex::Sink];
       
        let nb_vertices = self.graph.len();

        let flow_upper_bound = self.flow_upper_bound();
        
        //To ensure the dispersion of the associations generated by the
        //assignation, we shuffle the neighbours of the nodes. Hence,
        //the vertices do not consider their neighbours in the same order.
        self.shuffle_edges();
        
        //We run Dinic's max flow algorithm
        loop {
            //We build the level array from Dinic's algorithm.
            let mut level = vec![None; nb_vertices];

            let mut fifo = VecDeque::new();
            fifo.push_back((idsource, 0));
            while !fifo.is_empty() {
                if let Some((id, lvl)) = fifo.pop_front() {
                    if level[id] == None {  //it means id has not yet been reached
                        level[id] = Some(lvl);
                        for edge in self.graph[id].iter() {
                            if edge.cap as i32 - edge.flow > 0 {
                                fifo.push_back((edge.dest, lvl + 1));
                            }
                        }
                    }
                }
            }
            if level[idsink] == None {
                //There is no residual flow
                break;
            }
            //Now we run DFS respecting the level array
            let mut next_nbd = vec![0; nb_vertices];
            let mut lifo = VecDeque::new();

            lifo.push_back((idsource, flow_upper_bound));

            while let Some((id_tmp, f_tmp)) = lifo.back() {
                let id = *id_tmp;
                let f = *f_tmp;
                if id == idsink {
                    //The DFS reached the sink, we can add a
                    //residual flow.
                    lifo.pop_back();
                    while let Some((id, _)) = lifo.pop_back() {
                        let nbd = next_nbd[id];
                        self.graph[id][nbd].flow += f as i32;
                        let id_rev = self.graph[id][nbd].dest;
                        let nbd_rev = self.graph[id][nbd].rev;
                        self.graph[id_rev][nbd_rev].flow -= f as i32;
                    }
                    lifo.push_back((idsource, flow_upper_bound));
                    continue;
                }
                //else we did not reach the sink
                let nbd = next_nbd[id];
                if nbd >= self.graph[id].len() {
                    //There is nothing to explore from id anymore
                    lifo.pop_back();
                    if let Some((parent, _)) = lifo.back() {
                        next_nbd[*parent] += 1;
                    }
                    continue;
                }
                //else we can try to send flow from id to its nbd
                let new_flow = min(f as i32, self.graph[id][nbd].cap as i32 - self.graph[id][nbd].flow) as u32;
                if new_flow == 0 {
                    next_nbd[id] += 1;
                    continue;
                }
                if let (Some(lvldest), Some(lvlid)) =
                                (level[self.graph[id][nbd].dest], level[id]){
                    if lvldest <= lvlid  {
                        //We cannot send flow to nbd.
                        next_nbd[id] += 1;
                        continue;
                    }
                }
                //otherwise, we send flow to nbd.
                lifo.push_back((self.graph[id][nbd].dest, new_flow));
            }
        }
        Ok(())
    }

    //This function takes a flow, and a cost function on the edges, and tries to find an
    // equivalent flow with a better cost, by finding improving overflow cycles. It uses 
    // as subroutine the Bellman Ford algorithm run up to path_length.
    // We assume that the cost of edge (u,v) is the opposite of the cost of (v,u), and only
    // one needs to be present in the cost function.
    pub fn optimize_flow_with_cost(&mut self , cost: &CostFunction, path_length: usize )
        -> Result<(),String>{
        //We build the weighted graph g where we will look for negative cycle
        let mut gf = self.build_cost_graph(cost)?;
        let mut cycles = gf.list_negative_cycles(path_length);
        while !cycles.is_empty() {
            //we enumerate negative cycles
            for c in cycles.iter(){
                for i in 0..c.len(){
                    //We add one flow unit to the edge (u,v) of cycle c
                    let idu = self.vertextoid[&c[i]];
                    let idv = self.vertextoid[&c[(i+1)%c.len()]];
                    for j in 0..self.graph[idu].len(){
                        //since idu appears at most once in the cycles, we enumerate every
                        //edge at most once.
                        let edge = self.graph[idu][j];
                        if edge.dest == idv {
                            self.graph[idu][j].flow += 1;
                            self.graph[idv][edge.rev].flow -=1;
                            break;
                        }
                    }
                }
            }

            gf = self.build_cost_graph(cost)?;
            cycles = gf.list_negative_cycles(path_length);
        }
        Ok(())
    }

    //Construct the weighted graph G_f from the flow and the cost function
    fn build_cost_graph(&self , cost: &CostFunction) -> Result<Graph<WeightedEdge>,String>{
        
        let mut g = Graph::<WeightedEdge>::new(&self.idtovertex);
        let nb_vertices = self.idtovertex.len();
        for i in 0..nb_vertices {
            for edge in self.graph[i].iter() {
                if edge.cap as  i32 -edge.flow > 0 {
                    //It is possible to send overflow through this edge
                    let u = self.idtovertex[i];
                    let v = self.idtovertex[edge.dest];
                    if cost.contains_key(&(u,v)) {
                        g.add_edge(u,v, cost[&(u,v)])?;
                    }
                    else if cost.contains_key(&(v,u)) {
                        g.add_edge(u,v, -cost[&(v,u)])?;
                    }
                    else{
                        g.add_edge(u,v, 0)?;
                    }
                }
            }
        }
        Ok(g)

    }


}

impl Graph<WeightedEdge>{
    //This function adds a single directed weighted edge to the graph.
    pub fn add_edge(&mut self, u: Vertex, v:Vertex, w: i32) -> Result<(), String>{
        if !self.vertextoid.contains_key(&u) || !self.vertextoid.contains_key(&v) {
            return Err("The graph does not contain the provided vertex.".to_string());
        }
        let idu = self.vertextoid[&u];
        let idv = self.vertextoid[&v];
        self.graph[idu].push( WeightedEdge{ w , dest: idv} );
        Ok(())
    }

    //This function lists the negative cycles it manages to find after path_length
    //iterations of the main loop of the Bellman-Ford algorithm. For the classical
    //algorithm, path_length needs to be equal to the number of vertices. However, 
    //for particular graph structures like our case, the algorithm is still correct
    //when path_length is the length of the longest possible simple path. 
    //See the formal description of the algorithm for more details. 
    fn list_negative_cycles(&self, path_length: usize) -> Vec< Vec<Vertex> > {
        
        let nb_vertices = self.graph.len();
        
        //We start with every vertex at distance 0 of some imaginary extra -1 vertex.
        let mut distance = vec![0 ; nb_vertices];
        //The prev vector collects for every vertex from where does the shortest path come
        let mut prev = vec![None; nb_vertices];

        for _ in 0..path_length +1 {
            for id in 0..nb_vertices{
                for e in self.graph[id].iter(){
                    if distance[id] + e.w < distance[e.dest] {
                        distance[e.dest] = distance[id] + e.w;
                        prev[e.dest] = Some(id);
                    }
                }
            }
        }


        //If self.graph contains a negative cycle, then at this point the graph described
        //by prev (which is a directed 1-forest/functional graph) 
        //must contain a cycle. We list the cycles of prev.
        let cycles_prev = cycles_of_1_forest(&prev);

        //Remark that the cycle in prev is in the reverse order compared to the cycle
        //in the graph. Thus the .rev().
        return cycles_prev.iter().map(|cycle| cycle.iter().rev().map(
                |id| self.idtovertex[*id]
                    ).collect() ).collect();
    }

}


//This function returns the list of cycles of a directed 1 forest. It does not
//check for the consistency of the input.
fn cycles_of_1_forest(forest: &[Option<usize>])  -> Vec<Vec<usize>> {
    let mut cycles = Vec::<Vec::<usize>>::new();
    let mut time_of_discovery = vec![None; forest.len()];

    for t in 0..forest.len(){
        let mut id = t;
        //while we are on a valid undiscovered node
        while time_of_discovery[id] == None {
            time_of_discovery[id] = Some(t);
            if let Some(i) = forest[id] {
                id = i;
            }
            else{
                break;
            }
        }
        if forest[id] != None && time_of_discovery[id] == Some(t) {
            //We discovered an id that we explored at this iteration t.
            //It means we are on a cycle
            let mut cy = vec![id; 1];
            let mut id2 = id;
            while let Some(id_next) = forest[id2] {
                id2 = id_next;
                if id2 != id {
                    cy.push(id2);
                }
                else {
                    break;
                }
            }
            cycles.push(cy);
        }
    }
    cycles
}