aboutsummaryrefslogtreecommitdiff
path: root/src/block/repair.rs
blob: e18eeaeb46cffb971c2675dfea0aae8cb667320f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
use core::ops::Bound;
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Duration;

use async_trait::async_trait;
use rand::Rng;
use tokio::fs;
use tokio::select;
use tokio::sync::mpsc;
use tokio::sync::watch;

use garage_util::background::*;
use garage_util::data::*;
use garage_util::error::*;
use garage_util::persister::PersisterShared;
use garage_util::time::*;
use garage_util::tranquilizer::Tranquilizer;

use crate::block::*;
use crate::layout::*;
use crate::manager::*;

// Full scrub every 25 days with a random element of 10 days mixed in below
const SCRUB_INTERVAL: Duration = Duration::from_secs(3600 * 24 * 25);
// Scrub tranquility is initially set to 4, but can be changed in the CLI
// and the updated version is persisted over Garage restarts
const INITIAL_SCRUB_TRANQUILITY: u32 = 4;

// ---- ---- ----
// FIRST KIND OF REPAIR: FINDING MISSING BLOCKS/USELESS BLOCKS
// This is a one-shot repair operation that can be launched,
// checks everything, and then exits.
// ---- ---- ----

pub struct RepairWorker {
	manager: Arc<BlockManager>,
	next_start: Option<Hash>,
	block_iter: Option<BlockStoreIterator>,
}

impl RepairWorker {
	pub fn new(manager: Arc<BlockManager>) -> Self {
		Self {
			manager,
			next_start: None,
			block_iter: None,
		}
	}
}

#[async_trait]
impl Worker for RepairWorker {
	fn name(&self) -> String {
		"Block repair worker".into()
	}

	fn status(&self) -> WorkerStatus {
		match self.block_iter.as_ref() {
			None => {
				let idx_bytes = self
					.next_start
					.as_ref()
					.map(|x| x.as_slice())
					.unwrap_or(&[]);
				let idx_bytes = if idx_bytes.len() > 4 {
					&idx_bytes[..4]
				} else {
					idx_bytes
				};
				WorkerStatus {
					progress: Some("0.00%".into()),
					freeform: vec![format!(
						"Currently in phase 1, iterator position: {}",
						hex::encode(idx_bytes)
					)],
					..Default::default()
				}
			}
			Some(bi) => WorkerStatus {
				progress: Some(format!("{:.2}%", bi.progress() * 100.)),
				freeform: vec!["Currently in phase 2".into()],
				..Default::default()
			},
		}
	}

	async fn work(&mut self, _must_exit: &mut watch::Receiver<bool>) -> Result<WorkerState, Error> {
		match self.block_iter.as_mut() {
			None => {
				// Phase 1: Repair blocks from RC table.

				// We have to do this complicated two-step process where we first read a bunch
				// of hashes from the RC table, and then insert them in the to-resync queue,
				// because of SQLite. Basically, as long as we have an iterator on a DB table,
				// we can't do anything else on the DB. The naive approach (which we had previously)
				// of just iterating on the RC table and inserting items one to one in the resync
				// queue can't work here, it would just provoke a deadlock in the SQLite adapter code.
				// This is mostly because the Rust bindings for SQLite assume a worst-case scenario
				// where SQLite is not compiled in thread-safe mode, so we have to wrap everything
				// in a mutex (see db/sqlite_adapter.rs and discussion in PR #322).
				// TODO: maybe do this with tokio::task::spawn_blocking ?
				let mut batch_of_hashes = vec![];
				let start_bound = match self.next_start.as_ref() {
					None => Bound::Unbounded,
					Some(x) => Bound::Excluded(x.as_slice()),
				};
				for entry in self
					.manager
					.rc
					.rc
					.range::<&[u8], _>((start_bound, Bound::Unbounded))?
				{
					let (hash, _) = entry?;
					let hash = Hash::try_from(&hash[..]).unwrap();
					batch_of_hashes.push(hash);
					if batch_of_hashes.len() >= 1000 {
						break;
					}
				}
				if batch_of_hashes.is_empty() {
					// move on to phase 2
					self.block_iter = Some(BlockStoreIterator::new(&self.manager));
					return Ok(WorkerState::Busy);
				}

				for hash in batch_of_hashes.into_iter() {
					self.manager
						.resync
						.put_to_resync(&hash, Duration::from_secs(0))?;
					self.next_start = Some(hash)
				}

				Ok(WorkerState::Busy)
			}
			Some(bi) => {
				// Phase 2: Repair blocks actually on disk
				// Lists all blocks on disk and adds them to the resync queue.
				// This allows us to find blocks we are storing but don't actually need,
				// so that we can offload them if necessary and then delete them locally.
				if let Some((_path, hash)) = bi.next().await? {
					self.manager
						.resync
						.put_to_resync(&hash, Duration::from_secs(0))?;
					Ok(WorkerState::Busy)
				} else {
					Ok(WorkerState::Done)
				}
			}
		}
	}

	async fn wait_for_work(&mut self) -> WorkerState {
		unreachable!()
	}
}

// ---- ---- ----
// SECOND KIND OF REPAIR: SCRUBBING THE DATASTORE
// This is significantly more complex than the process above,
// as it is a continuously-running task that triggers automatically
// every SCRUB_INTERVAL, but can also be triggered manually
// and whose parameter (esp. speed) can be controlled at runtime.
// ---- ---- ----

mod v081 {
	use serde::{Deserialize, Serialize};

	#[derive(Serialize, Deserialize)]
	pub struct ScrubWorkerPersisted {
		pub tranquility: u32,
		pub(crate) time_last_complete_scrub: u64,
		pub(crate) corruptions_detected: u64,
	}

	impl garage_util::migrate::InitialFormat for ScrubWorkerPersisted {}
}

mod v082 {
	use garage_util::data::Hash;
	use serde::{Deserialize, Serialize};
	use std::path::PathBuf;

	use super::v081;

	#[derive(Serialize, Deserialize)]
	pub struct ScrubWorkerPersisted {
		pub tranquility: u32,
		pub(crate) time_last_complete_scrub: u64,
		pub(crate) time_next_run_scrub: u64,
		pub(crate) corruptions_detected: u64,
		#[serde(default)]
		pub(crate) checkpoint: Option<BlockStoreIterator>,
	}

	#[derive(Serialize, Deserialize, Clone)]
	pub struct BlockStoreIterator {
		pub todo: Vec<BsiTodo>,
	}

	#[derive(Serialize, Deserialize, Clone)]
	pub enum BsiTodo {
		Directory {
			path: PathBuf,
			progress_min: u64,
			progress_max: u64,
		},
		File {
			path: PathBuf,
			hash: Hash,
			progress: u64,
		},
	}

	impl garage_util::migrate::Migrate for ScrubWorkerPersisted {
		type Previous = v081::ScrubWorkerPersisted;
		const VERSION_MARKER: &'static [u8] = b"G082bswp";

		fn migrate(old: v081::ScrubWorkerPersisted) -> ScrubWorkerPersisted {
			use crate::repair::randomize_next_scrub_run_time;

			ScrubWorkerPersisted {
				tranquility: old.tranquility,
				time_last_complete_scrub: old.time_last_complete_scrub,
				time_next_run_scrub: randomize_next_scrub_run_time(old.time_last_complete_scrub),
				corruptions_detected: old.corruptions_detected,
				checkpoint: None,
			}
		}
	}
}

pub use v082::*;

pub struct ScrubWorker {
	manager: Arc<BlockManager>,
	rx_cmd: mpsc::Receiver<ScrubWorkerCommand>,

	work: ScrubWorkerState,
	tranquilizer: Tranquilizer,

	persister: PersisterShared<ScrubWorkerPersisted>,
}

fn randomize_next_scrub_run_time(timestamp: u64) -> u64 {
	// Take SCRUB_INTERVAL and mix in a random interval of 10 days to attempt to
	// balance scrub load across different cluster nodes.

	timestamp
		+ SCRUB_INTERVAL
			.saturating_add(Duration::from_secs(
				rand::thread_rng().gen_range(0..3600 * 24 * 10),
			))
			.as_millis() as u64
}

impl Default for ScrubWorkerPersisted {
	fn default() -> Self {
		ScrubWorkerPersisted {
			time_last_complete_scrub: 0,
			time_next_run_scrub: randomize_next_scrub_run_time(now_msec()),
			tranquility: INITIAL_SCRUB_TRANQUILITY,
			corruptions_detected: 0,
			checkpoint: None,
		}
	}
}

#[derive(Default)]
enum ScrubWorkerState {
	Running {
		iterator: BlockStoreIterator,
		// time of the last checkpoint
		t_cp: u64,
	},
	Paused {
		iterator: BlockStoreIterator,
		// time at which the scrub should be resumed
		t_resume: u64,
	},
	#[default]
	Finished,
}

#[derive(Debug)]
pub enum ScrubWorkerCommand {
	Start,
	Pause(Duration),
	Resume,
	Cancel,
}

impl ScrubWorker {
	pub(crate) fn new(
		manager: Arc<BlockManager>,
		rx_cmd: mpsc::Receiver<ScrubWorkerCommand>,
		persister: PersisterShared<ScrubWorkerPersisted>,
	) -> Self {
		let work = match persister.get_with(|x| x.checkpoint.clone()) {
			None => ScrubWorkerState::Finished,
			Some(iterator) => ScrubWorkerState::Running {
				iterator,
				t_cp: now_msec(),
			},
		};
		Self {
			manager,
			rx_cmd,
			work,
			tranquilizer: Tranquilizer::new(30),
			persister,
		}
	}

	async fn handle_cmd(&mut self, cmd: ScrubWorkerCommand) {
		match cmd {
			ScrubWorkerCommand::Start => {
				self.work = match std::mem::take(&mut self.work) {
					ScrubWorkerState::Finished => {
						info!("Scrub worker initializing, now performing datastore scrub");
						let iterator = BlockStoreIterator::new(&self.manager);
						if let Err(e) = self
							.persister
							.set_with(|x| x.checkpoint = Some(iterator.clone()))
						{
							error!("Could not save scrub checkpoint: {}", e);
						}
						ScrubWorkerState::Running {
							iterator,
							t_cp: now_msec(),
						}
					}
					work => {
						error!("Cannot start scrub worker: already running!");
						work
					}
				};
			}
			ScrubWorkerCommand::Pause(dur) => {
				self.work = match std::mem::take(&mut self.work) {
					ScrubWorkerState::Running { iterator, .. }
					| ScrubWorkerState::Paused { iterator, .. } => {
						if let Err(e) = self
							.persister
							.set_with(|x| x.checkpoint = Some(iterator.clone()))
						{
							error!("Could not save scrub checkpoint: {}", e);
						}
						ScrubWorkerState::Paused {
							iterator,
							t_resume: now_msec() + dur.as_millis() as u64,
						}
					}
					work => {
						error!("Cannot pause scrub worker: not running!");
						work
					}
				};
			}
			ScrubWorkerCommand::Resume => {
				self.work = match std::mem::take(&mut self.work) {
					ScrubWorkerState::Paused { iterator, .. } => ScrubWorkerState::Running {
						iterator,
						t_cp: now_msec(),
					},
					work => {
						error!("Cannot resume scrub worker: not paused!");
						work
					}
				};
			}
			ScrubWorkerCommand::Cancel => {
				self.work = match std::mem::take(&mut self.work) {
					ScrubWorkerState::Running { .. } | ScrubWorkerState::Paused { .. } => {
						ScrubWorkerState::Finished
					}
					work => {
						error!("Cannot cancel scrub worker: not running!");
						work
					}
				}
			}
		}
	}
}

#[async_trait]
impl Worker for ScrubWorker {
	fn name(&self) -> String {
		"Block scrub worker".into()
	}

	fn status(&self) -> WorkerStatus {
		let (corruptions_detected, tranquility, time_last_complete_scrub, time_next_run_scrub) =
			self.persister.get_with(|p| {
				(
					p.corruptions_detected,
					p.tranquility,
					p.time_last_complete_scrub,
					p.time_next_run_scrub,
				)
			});

		let mut s = WorkerStatus {
			persistent_errors: Some(corruptions_detected),
			tranquility: Some(tranquility),
			..Default::default()
		};
		match &self.work {
			ScrubWorkerState::Running { iterator, .. } => {
				s.progress = Some(format!("{:.2}%", iterator.progress() * 100.));
			}
			ScrubWorkerState::Paused { iterator, t_resume } => {
				s.progress = Some(format!("{:.2}%", iterator.progress() * 100.));
				s.freeform = vec![format!(
					"Scrub paused, resumes at {}",
					msec_to_rfc3339(*t_resume)
				)];
			}
			ScrubWorkerState::Finished => {
				s.freeform = vec![
					format!(
						"Last scrub completed at {}",
						msec_to_rfc3339(time_last_complete_scrub),
					),
					format!(
						"Next scrub scheduled for {}",
						msec_to_rfc3339(time_next_run_scrub)
					),
				];
			}
		}
		s
	}

	async fn work(&mut self, _must_exit: &mut watch::Receiver<bool>) -> Result<WorkerState, Error> {
		match self.rx_cmd.try_recv() {
			Ok(cmd) => self.handle_cmd(cmd).await,
			Err(mpsc::error::TryRecvError::Disconnected) => return Ok(WorkerState::Done),
			Err(mpsc::error::TryRecvError::Empty) => (),
		};

		match &mut self.work {
			ScrubWorkerState::Running { iterator, t_cp } => {
				self.tranquilizer.reset();
				let now = now_msec();

				if let Some((_path, hash)) = iterator.next().await? {
					match self.manager.read_block(&hash).await {
						Err(Error::CorruptData(_)) => {
							error!("Found corrupt data block during scrub: {:?}", hash);
							self.persister.set_with(|p| p.corruptions_detected += 1)?;
						}
						Err(e) => return Err(e),
						_ => (),
					};

					if now - *t_cp > 60 * 1000 {
						self.persister
							.set_with(|p| p.checkpoint = Some(iterator.clone()))?;
						*t_cp = now;
					}

					Ok(self
						.tranquilizer
						.tranquilize_worker(self.persister.get_with(|p| p.tranquility)))
				} else {
					let next_scrub_timestamp = randomize_next_scrub_run_time(now);

					self.persister.set_with(|p| {
						p.time_last_complete_scrub = now;
						p.time_next_run_scrub = next_scrub_timestamp;
						p.checkpoint = None;
					})?;
					self.work = ScrubWorkerState::Finished;
					self.tranquilizer.clear();

					info!(
						"Datastore scrub completed, next scrub scheduled for {}",
						msec_to_rfc3339(next_scrub_timestamp)
					);

					Ok(WorkerState::Idle)
				}
			}
			_ => Ok(WorkerState::Idle),
		}
	}

	async fn wait_for_work(&mut self) -> WorkerState {
		let (wait_until, command) = match &self.work {
			ScrubWorkerState::Running { .. } => return WorkerState::Busy,
			ScrubWorkerState::Paused { t_resume, .. } => (*t_resume, ScrubWorkerCommand::Resume),
			ScrubWorkerState::Finished => (
				self.persister.get_with(|p| p.time_next_run_scrub),
				ScrubWorkerCommand::Start,
			),
		};

		let now = now_msec();
		if now >= wait_until {
			self.handle_cmd(command).await;
			return WorkerState::Busy;
		}
		let delay = Duration::from_millis(wait_until - now);
		select! {
			_ = tokio::time::sleep(delay) => self.handle_cmd(command).await,
			cmd = self.rx_cmd.recv() => if let Some(cmd) = cmd {
				self.handle_cmd(cmd).await;
			} else {
				return WorkerState::Done;
			}
		}

		match &self.work {
			ScrubWorkerState::Running { .. } => WorkerState::Busy,
			_ => WorkerState::Idle,
		}
	}
}

// ---- ---- ----
// THIRD KIND OF REPAIR: REBALANCING DATA BLOCKS
// between multiple storage locations.
// This is a one-shot repair operation that can be launched,
// checks everything, and then exits.
// ---- ---- ----

pub struct RebalanceWorker {
	manager: Arc<BlockManager>,
	block_iter: BlockStoreIterator,
	t_started: u64,
	t_finished: Option<u64>,
	moved: usize,
	moved_bytes: u64,
}

impl RebalanceWorker {
	pub fn new(manager: Arc<BlockManager>) -> Self {
		let block_iter = BlockStoreIterator::new(&manager);
		Self {
			manager,
			block_iter,
			t_started: now_msec(),
			t_finished: None,
			moved: 0,
			moved_bytes: 0,
		}
	}
}

#[async_trait]
impl Worker for RebalanceWorker {
	fn name(&self) -> String {
		"Block rebalance worker".into()
	}

	fn status(&self) -> WorkerStatus {
		let t_cur = self.t_finished.unwrap_or_else(|| now_msec());
		let rate = self.moved_bytes / std::cmp::max(1, (t_cur - self.t_started) / 1000);
		WorkerStatus {
			progress: Some(format!("{:.2}%", self.block_iter.progress() * 100.)),
			freeform: vec![
				format!("Blocks moved: {}", self.moved),
				format!(
					"Bytes moved: {} ({}/s)",
					bytesize::ByteSize::b(self.moved_bytes),
					bytesize::ByteSize::b(rate)
				),
				format!("Started: {}", msec_to_rfc3339(self.t_started)),
			],
			..Default::default()
		}
	}

	async fn work(&mut self, _must_exit: &mut watch::Receiver<bool>) -> Result<WorkerState, Error> {
		if let Some((path, hash)) = self.block_iter.next().await? {
			let prim_loc = self.manager.data_layout.load().primary_block_dir(&hash);
			if path.parent().expect("no parent?") != prim_loc {
				let path = match path.extension() {
					None => DataBlockPath::Plain(path),
					Some(x) if x.to_str() == Some("zst") => DataBlockPath::Compressed(path),
					_ => {
						warn!("not rebalancing file: {}", path.to_string_lossy());
						return Ok(WorkerState::Busy);
					}
				};
				// block is not in its primary location,
				// move it there (reading and re-writing does the trick)
				debug!("rebalance: moving block {:?}", hash);
				let data = self.manager.read_block_from(&hash, &path).await?;
				self.manager.write_block(&hash, &data).await?;
				self.moved += 1;
				self.moved_bytes += data.inner_buffer().len() as u64;
			}
			Ok(WorkerState::Busy)
		} else {
			// all blocks are in their primary location:
			// - the ones we moved now are
			// - the ones written in the meantime always were, because we only
			//   write to primary locations
			// so we can safely remove all secondary locations from the data layout
			let new_layout = self
				.manager
				.data_layout
				.load_full()
				.without_secondary_locations();
			self.manager
				.data_layout_persister
				.save_async(&new_layout)
				.await?;
			self.manager.data_layout.store(Arc::new(new_layout));
			self.t_finished = Some(now_msec());
			Ok(WorkerState::Done)
		}
	}

	async fn wait_for_work(&mut self) -> WorkerState {
		unreachable!()
	}
}

// ---- ---- ----
// UTILITY FOR ENUMERATING THE BLOCK STORE
// ---- ---- ----

const PROGRESS_FP: u64 = 1_000_000_000;

impl BlockStoreIterator {
	fn new(manager: &BlockManager) -> Self {
		let data_layout = manager.data_layout.load_full();

		let min_cap = data_layout
			.data_dirs
			.iter()
			.filter_map(|x| x.capacity())
			.min()
			.unwrap_or(0);

		let sum_cap = data_layout
			.data_dirs
			.iter()
			.map(|x| x.capacity().unwrap_or(min_cap /* approximation */))
			.sum::<u64>() as u128;

		let mut cum_cap = 0;
		let mut todo = vec![];
		for dir in data_layout.data_dirs.iter() {
			let cap = match dir.state {
				DataDirState::Active { capacity } => capacity,
				_ => min_cap,
			};

			let progress_min = ((cum_cap as u128 * PROGRESS_FP as u128) / (sum_cap as u128)) as u64;
			let progress_max =
				(((cum_cap + cap) as u128 * PROGRESS_FP as u128) / (sum_cap as u128)) as u64;
			cum_cap += cap;

			todo.push(BsiTodo::Directory {
				path: dir.path.clone(),
				progress_min,
				progress_max,
			});
		}
		// entries are processed back-to-front (because of .pop()),
		// so reverse entries to process them in increasing progress bounds
		todo.reverse();

		let ret = Self { todo };
		debug_assert!(ret.progress_invariant());

		ret
	}

	/// Returns progress done, between 0 and 1
	fn progress(&self) -> f32 {
		self.todo
			.last()
			.map(|x| match x {
				BsiTodo::Directory { progress_min, .. } => *progress_min,
				BsiTodo::File { progress, .. } => *progress,
			})
			.map(|x| x as f32 / PROGRESS_FP as f32)
			.unwrap_or(1.0)
	}

	async fn next(&mut self) -> Result<Option<(PathBuf, Hash)>, Error> {
		loop {
			match self.todo.pop() {
				None => return Ok(None),
				Some(BsiTodo::Directory {
					path,
					progress_min,
					progress_max,
				}) => {
					let istart = self.todo.len();

					let mut reader = fs::read_dir(&path).await?;
					while let Some(ent) = reader.next_entry().await? {
						let name = if let Ok(n) = ent.file_name().into_string() {
							n
						} else {
							continue;
						};
						let ft = ent.file_type().await?;
						if ft.is_dir() && hex::decode(&name).is_ok() {
							self.todo.push(BsiTodo::Directory {
								path: ent.path(),
								progress_min: 0,
								progress_max: 0,
							});
						} else if ft.is_file() {
							let filename = name.split_once('.').map(|(f, _)| f).unwrap_or(&name);
							if filename.len() == 64 {
								if let Ok(h) = hex::decode(filename) {
									let mut hash = [0u8; 32];
									hash.copy_from_slice(&h);
									self.todo.push(BsiTodo::File {
										path: ent.path(),
										hash: hash.into(),
										progress: 0,
									});
								}
							}
						}
					}

					let count = self.todo.len() - istart;
					for (i, ent) in self.todo[istart..].iter_mut().enumerate() {
						let p1 = progress_min
							+ ((progress_max - progress_min) * i as u64) / count as u64;
						let p2 = progress_min
							+ ((progress_max - progress_min) * (i + 1) as u64) / count as u64;
						match ent {
							BsiTodo::Directory {
								progress_min,
								progress_max,
								..
							} => {
								*progress_min = p1;
								*progress_max = p2;
							}
							BsiTodo::File { progress, .. } => {
								*progress = p1;
							}
						}
					}
					self.todo[istart..].reverse();
					debug_assert!(self.progress_invariant());
				}
				Some(BsiTodo::File { path, hash, .. }) => {
					return Ok(Some((path, hash)));
				}
			}
		}
	}

	// for debug_assert!
	fn progress_invariant(&self) -> bool {
		let iter = self.todo.iter().map(|x| match x {
			BsiTodo::Directory { progress_min, .. } => progress_min,
			BsiTodo::File { progress, .. } => progress,
		});
		let iter_1 = iter.clone().skip(1);
		iter.zip(iter_1).all(|(prev, next)| prev >= next)
	}
}