aboutsummaryrefslogtreecommitdiff
path: root/script/simulate_ring.py
blob: 79537859f05a4c79d84a6ed624c297af16a34ecd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#!/usr/bin/env python3

import hashlib
import bisect
import xxhash
import numpy as np

REPLICATION_FACTOR = 3

def hash_str(s):
    xxh = xxhash.xxh64()
    xxh.update(s.encode('ascii'))
    return xxh.hexdigest()

def sha256_str(s):
    return hashlib.sha256(s.encode('ascii')).hexdigest()

def walk_ring_from_pos(tokens, dcs, start):
    ret = []
    ret_dcs = set()
    delta = 0
    while len(ret) < REPLICATION_FACTOR:
        i = (start + delta) % len(tokens)
        delta = delta + 1

        (token_k, token_dc, token_node) = tokens[i]
        if token_dc not in ret_dcs:
            ret_dcs |= set([token_dc])
            ret.append(token_node)
        elif len(ret_dcs) == len(dcs) and token_node not in ret:
            ret.append(token_node)
    return ret

"""
def count_tokens_per_node(tokens):
    tokens_of_node = {}
    for _, _, token_node in tokens:
        if token_node not in tokens_of_node:
            tokens_of_node[token_node] = 0
        tokens_of_node[token_node] += 1
    print("#tokens per node:")
    for node, ntok in sorted(list(tokens_of_node.items())):
        print("-", node, ": ", ntok)
"""

def count_partitions_per_node(ring_node_list):
    tokens_of_node = {}
    for nodelist in ring_node_list:
        for node_id in nodelist:
            if node_id not in tokens_of_node:
                tokens_of_node[node_id] = 0
            tokens_of_node[node_id] += 1
    print("#partitions per node:")
    for node, ntok in sorted(list(tokens_of_node.items())):
        print("-", node, ": ", ntok)


def method1(nodes):
    tokens = []
    dcs = set()
    for (node_id, dc, n_tokens) in nodes:
        dcs |= set([dc])
        for i in range(n_tokens):
            token = hash_str(f"{node_id} {i}")
            tokens.append((token, dc, node_id))
    tokens.sort(key=lambda tok: tok[0])

    space_of_node = {}

    def walk_ring(v):
        i = bisect.bisect_left([tok for tok, _, _ in tokens], hash_str(v))
        return walk_ring_from_pos(tokens, dcs, i)

    ring_node_list = [walk_ring_from_pos(tokens, dcs, i) for i in range(len(tokens))]

    return walk_ring, ring_node_list


def method2(nodes):
    partition_bits = 10
    partitions = list(range(2**partition_bits))
    def partition_node(i):
        h, hn, hndc = None, None, None
        for (node_id, node_dc, n_tokens) in nodes:
            for tok in range(n_tokens):
                hnode = hash_str(f"partition {i} node {node_id} token {tok}")
                if h is None or hnode < h:
                    h = hnode
                    hn = node_id
                    hndc = node_dc
        return (i, hndc, hn)

    partition_nodes = [partition_node(i) for i in partitions]

    dcs = list(set(node_dc for _, node_dc, _ in nodes))

        
    def walk_ring(v):
        # xxh = xxhash.xxh32()
        # xxh.update(v.encode('ascii'))
        # vh = xxh.intdigest()
        # i = vh % (2**partition_bits)
        vh = hashlib.sha256(v.encode('ascii')).digest()
        i = (vh[0]<<8 | vh[1]) % (2**partition_bits)
        return walk_ring_from_pos(partition_nodes, dcs, i)

    ring_node_list = [walk_ring_from_pos(partition_nodes, dcs, i) for i in range(len(partition_nodes))]

    return walk_ring, ring_node_list


def method3(nodes):
    partition_bits = 10

    queues = []
    for (node_id, node_dc, n_tokens) in nodes:
        que = [(i, hash_str(f"{node_id} {i}")) for i in range(2**partition_bits)]
        que.sort(key=lambda x: x[1])
        que = [x[0] for x in que]
        queues.append((node_id, node_dc, n_tokens, que))

    partitions = [None for _ in range(2**partition_bits)]
    queues.sort(key=lambda x: hash_str(x[0]))

    # Maglev
    remaining = 2**partition_bits
    while remaining > 0:
        for toktok in range(100):
            for iq in range(len(queues)):
                node_id, node_dc, n_tokens, node_queue = queues[iq]
                if toktok >= n_tokens:
                    continue
                for qi, qv in enumerate(node_queue):
                    if partitions[qv] == None:
                        partitions[qv] = (qv, node_dc, node_id)
                        remaining -= 1
                        queues[iq] = (node_id, node_dc, n_tokens, node_queue[qi+1:])
                        break

    dcs = list(set(node_dc for _, node_dc, _ in nodes))

    def walk_ring(v):
        vh = hashlib.sha256(v.encode('ascii')).digest()
        i = (vh[0]<<8 | vh[1]) % (2**partition_bits)
        return walk_ring_from_pos(partitions, dcs, i)

    ring_node_list = [walk_ring_from_pos(partitions, dcs, i) for i in range(len(partitions))]

    return walk_ring, ring_node_list



def method4(nodes):
    partition_bits = 10

    partitions = [[] for _ in range(2**partition_bits)]
    dcs = list(set(node_dc for _, node_dc, _ in nodes))

    # Maglev, improved for several replicas on several DCs
    for ri in range(REPLICATION_FACTOR):
        queues = []
        for (node_id, node_dc, n_tokens) in nodes:
            que = [(i, hash_str(f"{node_id} {i}")) for i in range(2**partition_bits)]
            que.sort(key=lambda x: x[1])
            que = [x[0] for x in que]
            queues.append((node_id, node_dc, n_tokens, que))

        queues.sort(key=lambda x: hash_str("{} {}".format(ri, x[0])))

        remaining = 2**partition_bits
        while remaining > 0:
            for toktok in range(100):
                for iq in range(len(queues)):
                    node_id, node_dc, n_tokens, node_queue = queues[iq]
                    if toktok >= n_tokens:
                        continue
                    for qi, qv in enumerate(node_queue):
                        if len(partitions[qv]) != ri:
                            continue
                        p_dcs = set([x[0] for x in partitions[qv]])
                        p_nodes = [x[1] for x in partitions[qv]]
                        if node_dc not in p_dcs or (len(p_dcs) == len(dcs) and node_id not in p_nodes):
                            partitions[qv].append((node_dc, node_id))
                            remaining -= 1
                            queues[iq] = (node_id, node_dc, n_tokens, node_queue[qi+1:])
                            break

    def walk_ring(v):
        vh = hashlib.sha256(v.encode('ascii')).digest()
        i = (vh[0]<<8 | vh[1]) % (2**partition_bits)
        assert len(set([node_dc for node_dc, _ in partitions[i]])) == min(REPLICATION_FACTOR, len(dcs))
        return [node_id for _, node_id in partitions[i]]

    ring_node_list = [[node_id for _, node_id in p] for p in partitions]

    return walk_ring, ring_node_list

def evaluate_method(method, nodes):
    walk_ring, ring_node_list = method(nodes)
    print("Ring length:", len(ring_node_list))
    count_partitions_per_node(ring_node_list)

    print("Number of data items per node (100000 simulation):")
    node_data_counts = {}
    for i in range(100000):
        inodes = walk_ring(f"{i}")
        for n in inodes:
            if n not in node_data_counts:
                node_data_counts[n] = 0
            node_data_counts[n] += 1
    for n, v in sorted(list(node_data_counts.items())):
        print("-", n, ": ", v)

    dclist_per_ntok = {}
    for node_id, _, ntok in nodes:
        if ntok not in dclist_per_ntok:
            dclist_per_ntok[ntok] = []
        dclist_per_ntok[ntok].append(node_data_counts[node_id])
    list_normalized = []
    for ntok, dclist in dclist_per_ntok.items():
        avg = sum(dclist)/len(dclist)
        for v in dclist:
            list_normalized.append(v / avg)
    print("variance wrt. same-ntok mean:", "%.2f%%"%(np.var(list_normalized)*100))

    num_changes_sum = [0, 0, 0, 0]
    for n in nodes:
        nodes2 = [nn for nn in nodes if nn != n]
        _, ring_node_list_2 = method(nodes2)
        if len(ring_node_list_2) != len(ring_node_list):
            continue
        num_changes = [0, 0, 0, 0] 
        for (ns1, ns2) in zip(ring_node_list, ring_node_list_2):
            changes = sum(1 for x in ns1 if x not in ns2)
            num_changes[changes] += 1
        for i, v in enumerate(num_changes):
            num_changes_sum[i] += v / len(ring_node_list)
        print("removing", n[1], n[0], ":", " ".join(["%.2f%%"%(x*100/len(ring_node_list)) for x in num_changes]))
    print("1-node removal: partitions moved on 0/1/2/3 nodes: ", " ".join(["%.2f%%"%(x*100/len(nodes)) for x in num_changes_sum]))


if __name__ == "__main__":
    print("------")
    print("method 1 (standard ring)")
    nodes = [('digitale', 'atuin', 64),
             ('drosera', 'atuin', 64),
             ('datura', 'atuin', 64),
             ('io', 'jupiter', 128)]
    nodes2 = [('digitale', 'atuin', 64),
             ('drosera', 'atuin', 64),
             ('datura', 'atuin', 64),
             ('io', 'jupiter', 128),
             ('isou', 'jupiter', 64),
             ('mini', 'grog', 32),
             ('mixi', 'grog', 32),
             ('moxi', 'grog', 32),
             ('modi', 'grog', 32),
             ('geant', 'grisou', 128),
             ('gipsie', 'grisou', 128),
             ]
    evaluate_method(method1, nodes2)

    print("------")
    print("method 2 (custom ring)")
    nodes = [('digitale', 'atuin', 1),
             ('drosera', 'atuin', 1),
             ('datura', 'atuin', 1),
             ('io', 'jupiter', 2)]
    nodes2 = [('digitale', 'atuin', 2),
             ('drosera', 'atuin', 2),
             ('datura', 'atuin', 2),
             ('io', 'jupiter', 4),
             ('isou', 'jupiter', 2),
             ('mini', 'grog', 1),
             ('mixi', 'grog', 1),
             ('moxi', 'grog', 1),
             ('modi', 'grog', 1),
             ('geant', 'grisou', 4),
             ('gipsie', 'grisou', 4),
             ]
    evaluate_method(method2, nodes2)

    print("------")
    print("method 3 (maglev)")
    evaluate_method(method3, nodes2)


    print("------")
    print("method 4 (maglev, multi-dc twist)")
    evaluate_method(method4, nodes2)