//! Contains common types and functions related to serialization and integrity use rand::Rng; use serde::de::{self, Visitor}; use serde::{Deserialize, Deserializer, Serialize, Serializer}; use std::fmt; /// An array of 32 bytes #[derive(Default, Clone, Hash, PartialEq, Eq, PartialOrd, Ord, Copy)] pub struct FixedBytes32([u8; 32]); impl From<[u8; 32]> for FixedBytes32 { fn from(x: [u8; 32]) -> FixedBytes32 { FixedBytes32(x) } } impl std::convert::AsRef<[u8]> for FixedBytes32 { fn as_ref(&self) -> &[u8] { &self.0[..] } } impl fmt::Debug for FixedBytes32 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", hex::encode(&self.0[..8])) } } struct FixedBytes32Visitor; impl<'de> Visitor<'de> for FixedBytes32Visitor { type Value = FixedBytes32; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a byte slice of size 32") } fn visit_bytes<E: de::Error>(self, value: &[u8]) -> Result<Self::Value, E> { if value.len() == 32 { let mut res = [0u8; 32]; res.copy_from_slice(value); Ok(res.into()) } else { Err(E::custom(format!( "Invalid byte string length {}, expected 32", value.len() ))) } } } impl<'de> Deserialize<'de> for FixedBytes32 { fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<FixedBytes32, D::Error> { deserializer.deserialize_bytes(FixedBytes32Visitor) } } impl Serialize for FixedBytes32 { fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { serializer.serialize_bytes(&self.0[..]) } } impl FixedBytes32 { /// Access the content as a slice pub fn as_slice(&self) -> &[u8] { &self.0[..] } /// Access the content as a mutable slice pub fn as_slice_mut(&mut self) -> &mut [u8] { &mut self.0[..] } /// Copy to a slice pub fn to_vec(self) -> Vec<u8> { self.0.to_vec() } /// Try building a FixedBytes32 from a slice /// Return None if the slice is not 32 bytes long pub fn try_from(by: &[u8]) -> Option<Self> { if by.len() != 32 { return None; } let mut ret = [0u8; 32]; ret.copy_from_slice(by); Some(Self(ret)) } /// Return the next hash pub fn increment(&self) -> Option<Self> { let mut ret = *self; for byte in ret.0.iter_mut().rev() { if *byte == u8::MAX { *byte = 0; } else { *byte = *byte + 1; return Some(ret); } } return None; } } impl From<garage_net::NodeID> for FixedBytes32 { fn from(node_id: garage_net::NodeID) -> FixedBytes32 { FixedBytes32::try_from(node_id.as_ref()).unwrap() } } impl From<FixedBytes32> for garage_net::NodeID { fn from(bytes: FixedBytes32) -> garage_net::NodeID { garage_net::NodeID::from_slice(bytes.as_slice()).unwrap() } } /// A 32 bytes UUID pub type Uuid = FixedBytes32; /// A 256 bit cryptographic hash, can be sha256 or blake2 depending on provenance pub type Hash = FixedBytes32; /// Compute the sha256 of a slice pub fn sha256sum(data: &[u8]) -> Hash { use sha2::{Digest, Sha256}; let mut hasher = Sha256::new(); hasher.update(data); let mut hash = [0u8; 32]; hash.copy_from_slice(&hasher.finalize()[..]); hash.into() } /// Compute the blake2 of a slice pub fn blake2sum(data: &[u8]) -> Hash { use blake2::{Blake2b512, Digest}; let mut hasher = Blake2b512::new(); hasher.update(data); let mut hash = [0u8; 32]; hash.copy_from_slice(&hasher.finalize()[..32]); hash.into() } /// A 64 bit non cryptographic hash pub type FastHash = u64; /// Compute a (non cryptographic) of a slice pub fn fasthash(data: &[u8]) -> FastHash { use xxhash_rust::xxh3::Xxh3; let mut h = Xxh3::new(); h.update(data); h.digest() } /// Generate a random 32 bytes UUID pub fn gen_uuid() -> Uuid { rand::thread_rng().gen::<[u8; 32]>().into() } #[cfg(test)] mod test { use super::*; #[test] fn test_increment() { let zero: FixedBytes32 = [0u8; 32].into(); let mut one: FixedBytes32 = [0u8; 32].into(); one.0[31] = 1; let max: FixedBytes32 = [0xFFu8; 32].into(); assert_eq!(zero.increment(), Some(one)); assert_eq!(max.increment(), None); let mut test: FixedBytes32 = [0u8; 32].into(); let i = 0x198DF97209F8FFFFu64; test.0[24..32].copy_from_slice(&u64::to_be_bytes(i)); let mut test2: FixedBytes32 = [0u8; 32].into(); test2.0[24..32].copy_from_slice(&u64::to_be_bytes(i + 1)); assert_eq!(test.increment(), Some(test2)); } }