use rand::Rng; use std::collections::{BTreeSet, HashMap, VecDeque}; use std::sync::Arc; use std::time::{Duration, Instant}; use futures::{pin_mut, select}; use futures::future::BoxFuture; use futures_util::stream::*; use futures_util::future::*; use tokio::sync::watch; use tokio::sync::Mutex; use serde::{Serialize, Deserialize}; use crate::data::*; use crate::error::Error; use crate::membership::Ring; use crate::table::*; const SCAN_INTERVAL: Duration = Duration::from_secs(3600); const CHECKSUM_CACHE_TIMEOUT: Duration = Duration::from_secs(1800); pub struct TableSyncer { pub table: Arc>, pub todo: Mutex, pub cache: Vec>>, } pub struct SyncTodo { pub todo: Vec, } #[derive(Debug, Clone)] pub struct Partition { pub begin: Hash, pub end: Hash, pub retain: bool, } #[derive(Hash, PartialEq, Eq, Debug, Clone, Serialize, Deserialize)] pub struct SyncRange { pub begin: Vec, pub end: Vec, pub level: usize, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct RangeChecksum { pub bounds: SyncRange, pub children: Vec<(SyncRange, Hash)>, pub found_limit: Option>, #[serde(skip, default="std::time::Instant::now")] pub time: Instant, } impl TableSyncer { pub async fn launch(table: Arc>) -> Arc { let todo = SyncTodo { todo: Vec::new() }; let syncer = Arc::new(TableSyncer { table: table.clone(), todo: Mutex::new(todo), cache: (0..32).map(|_| Mutex::new(HashMap::new())).collect::>(), }); let s1 = syncer.clone(); table .system .background .spawn_worker(move |must_exit: watch::Receiver| s1.watcher_task(must_exit)) .await; let s2 = syncer.clone(); table .system .background .spawn_worker(move |must_exit: watch::Receiver| s2.syncer_task(must_exit)) .await; syncer } async fn watcher_task( self: Arc, mut must_exit: watch::Receiver, ) -> Result<(), Error> { self.todo.lock().await.add_full_scan(&self.table); let mut next_full_scan = tokio::time::delay_for(SCAN_INTERVAL).fuse(); let mut prev_ring: Arc = self.table.system.ring.borrow().clone(); let mut ring_recv: watch::Receiver> = self.table.system.ring.clone(); loop { let s_ring_recv = ring_recv.recv().fuse(); let s_must_exit = must_exit.recv().fuse(); pin_mut!(s_ring_recv, s_must_exit); select! { _ = next_full_scan => { next_full_scan = tokio::time::delay_for(SCAN_INTERVAL).fuse(); self.todo.lock().await.add_full_scan(&self.table); } new_ring_r = s_ring_recv => { if let Some(new_ring) = new_ring_r { self.todo.lock().await.add_ring_difference(&self.table, &prev_ring, &new_ring); prev_ring = new_ring; } } must_exit_v = s_must_exit => { if must_exit_v.unwrap_or(false) { return Ok(()) } } } } } async fn syncer_task( self: Arc, mut must_exit: watch::Receiver, ) -> Result<(), Error> { while !*must_exit.borrow() { if let Some(partition) = self.todo.lock().await.pop_task() { let res = self.clone().sync_partition(&partition, &mut must_exit).await; if let Err(e) = res { eprintln!("Error while syncing {:?}: {}", partition, e); } } else { tokio::time::delay_for(Duration::from_secs(1)).await; } } Ok(()) } async fn sync_partition(self: Arc, partition: &Partition, must_exit: &mut watch::Receiver) -> Result<(), Error> { let root_cks = self.root_checksum(&partition.begin, &partition.end, must_exit).await?; eprintln!("Root checksum for {:?}: {:?}", partition, root_cks); let nodes = self.table.system.ring.borrow().clone().walk_ring(&partition.begin, self.table.param.replication_factor); let mut sync_futures = nodes.iter() .map(|node| self.clone().do_sync_with(root_cks.clone(), node.clone(), must_exit.clone())) .collect::>(); while let Some(r) = sync_futures.next().await { if let Err(e) = r { eprintln!("Sync error: {}", e); } } if !partition.retain { self.table.delete_range(&partition.begin, &partition.end).await?; } Ok(()) } async fn root_checksum(self: &Arc, begin: &Hash, end: &Hash, must_exit: &mut watch::Receiver) -> Result { for i in 1..32 { let rc = self.range_checksum(&SyncRange{ begin: begin.to_vec(), end: end.to_vec(), level: i, }, must_exit).await?; if rc.found_limit.is_none() { return Ok(rc); } } Err(Error::Message(format!("Unable to compute root checksum (this should never happen"))) } fn range_checksum<'a>(self: &'a Arc, range: &'a SyncRange, must_exit: &'a mut watch::Receiver) -> BoxFuture<'a, Result> { async move { let mut cache = self.cache[range.level].lock().await; if let Some(v) = cache.get(&range) { if Instant::now() - v.time < CHECKSUM_CACHE_TIMEOUT { return Ok(v.clone()); } } cache.remove(&range); drop(cache); let v = self.range_checksum_inner(&range, must_exit).await?; let mut cache = self.cache[range.level].lock().await; eprintln!("Checksum for {:?}: {:?}", range, v); cache.insert(range.clone(), v.clone()); Ok(v) }.boxed() } async fn range_checksum_inner(self: &Arc, range: &SyncRange, must_exit: &mut watch::Receiver) -> Result { if range.level == 1 { let mut children = vec![]; for item in self.table.store.range(range.begin.clone()..range.end.clone()) { let (key, value) = item?; let key_hash = hash(&key[..]); if key != range.begin && key_hash.as_slice()[0..range.level].iter().all(|x| *x == 0) { return Ok(RangeChecksum{ bounds: range.clone(), children, found_limit: Some(key.to_vec()), time: Instant::now(), }) } let item_range = SyncRange{ begin: key.to_vec(), end: vec![], level: 0, }; children.push((item_range, hash(&value[..]))); } Ok(RangeChecksum{ bounds: range.clone(), children, found_limit: None, time: Instant::now(), }) } else { let mut children = vec![]; let mut sub_range = SyncRange{ begin: range.begin.clone(), end: range.end.clone(), level: range.level - 1, }; let mut time = Instant::now(); while !*must_exit.borrow() { let sub_ck = self.range_checksum(&sub_range, must_exit).await?; if sub_ck.children.len() > 0 { let sub_ck_hash = hash(&rmp_to_vec_all_named(&sub_ck)?[..]); children.push((sub_range.clone(), sub_ck_hash)); if sub_ck.time < time { time = sub_ck.time; } } if sub_ck.found_limit.is_none() || sub_ck.children.len() == 0 { return Ok(RangeChecksum{ bounds: range.clone(), children, found_limit: None, time, }); } let found_limit = sub_ck.found_limit.unwrap(); let actual_limit_hash = hash(&found_limit[..]); if actual_limit_hash.as_slice()[0..range.level].iter().all(|x| *x == 0) { return Ok(RangeChecksum{ bounds: range.clone(), children, found_limit: Some(found_limit.clone()), time, }); } sub_range.begin = found_limit; } Err(Error::Message(format!("Exiting."))) } } async fn do_sync_with(self: Arc, root_ck: RangeChecksum, who: UUID, mut must_exit: watch::Receiver) -> Result<(), Error> { let mut todo = VecDeque::new(); todo.push_back(root_ck); while !todo.is_empty() && !*must_exit.borrow() { let end = std::cmp::min(16, todo.len()); let step = todo.drain(..end).collect::>(); unimplemented!() } Ok(()) } pub async fn handle_checksum_rpc(self: &Arc, checksums: &[RangeChecksum], mut must_exit: watch::Receiver) -> Result, Error> { let mut ret = vec![]; for ckr in checksums.iter() { let our_ckr = self.range_checksum(&ckr.bounds, &mut must_exit).await?; for (range, hash) in ckr.children.iter() { match our_ckr.children.binary_search_by(|(our_range, _)| our_range.begin.cmp(&range.begin)) { Err(_) => { ret.push(range.clone()); } Ok(i) => { if our_ckr.children[i].1 != *hash { ret.push(range.clone()); } } } } } Ok(ret) } } impl SyncTodo { fn add_full_scan(&mut self, table: &Table) { let my_id = table.system.id.clone(); self.todo.clear(); let ring: Arc = table.system.ring.borrow().clone(); for i in 0..ring.ring.len() { let nodes = ring.walk_ring_from_pos(i, table.param.replication_factor); let begin = ring.ring[i].location.clone(); if i == 0 { self.add_full_scan_aux(table, [0u8; 32].into(), begin.clone(), &nodes[..], &my_id); } if i == ring.ring.len() - 1 { self.add_full_scan_aux(table, begin, [0xffu8; 32].into(), &nodes[..], &my_id); } else { let end = ring.ring[i + 1].location.clone(); self.add_full_scan_aux(table, begin, end, &nodes[..], &my_id); } } } fn add_full_scan_aux( &mut self, table: &Table, begin: Hash, end: Hash, nodes: &[UUID], my_id: &UUID, ) { let retain = nodes.contains(my_id); if !retain { // Check if we have some data to send, otherwise skip if table .store .range(begin.clone()..end.clone()) .next() .is_none() { return; } } self.todo.push(Partition { begin, end, retain }); } fn add_ring_difference(&mut self, table: &Table, old: &Ring, new: &Ring) { let my_id = table.system.id.clone(); let old_ring = ring_points(old); let new_ring = ring_points(new); let both_ring = old_ring.union(&new_ring).cloned().collect::>(); let prev_todo_begin = self .todo .iter() .map(|x| x.begin.clone()) .collect::>(); let prev_todo_end = self .todo .iter() .map(|x| x.end.clone()) .collect::>(); let prev_todo = prev_todo_begin .union(&prev_todo_end) .cloned() .collect::>(); let all_points = both_ring.union(&prev_todo).cloned().collect::>(); self.todo.sort_by(|x, y| x.begin.cmp(&y.begin)); let mut new_todo = vec![]; for i in 0..all_points.len() - 1 { let begin = all_points[i].clone(); let end = all_points[i + 1].clone(); let was_ours = old .walk_ring(&begin, table.param.replication_factor) .contains(&my_id); let is_ours = new .walk_ring(&begin, table.param.replication_factor) .contains(&my_id); let was_todo = match self.todo.binary_search_by(|x| x.begin.cmp(&begin)) { Ok(_) => true, Err(j) => { (j > 0 && self.todo[j - 1].begin < end && begin < self.todo[j - 1].end) || (j < self.todo.len() && self.todo[j].begin < end && begin < self.todo[j].end) } }; if was_todo || (is_ours && !was_ours) || (was_ours && !is_ours) { new_todo.push(Partition { begin, end, retain: is_ours, }); } } self.todo = new_todo; } fn pop_task(&mut self) -> Option { if self.todo.is_empty() { return None; } let i = rand::thread_rng().gen_range::(0, self.todo.len()); if i == self.todo.len() - 1 { self.todo.pop() } else { let replacement = self.todo.pop().unwrap(); let ret = std::mem::replace(&mut self.todo[i], replacement); Some(ret) } } } fn ring_points(ring: &Ring) -> BTreeSet { let mut ret = BTreeSet::new(); ret.insert([0u8; 32].into()); ret.insert([0xFFu8; 32].into()); for i in 0..ring.ring.len() { ret.insert(ring.ring[i].location.clone()); } ret }