use core::borrow::Borrow; use std::convert::TryInto; use std::sync::Arc; use serde_bytes::ByteBuf; use tokio::sync::Notify; use garage_db as db; use garage_db::counted_tree_hack::CountedTree; use garage_util::data::*; use garage_util::error::*; use garage_util::migrate::Migrate; use garage_rpc::system::System; use crate::crdt::Crdt; use crate::gc::GcTodoEntry; use crate::metrics::*; use crate::replication::*; use crate::schema::*; use crate::util::*; pub struct TableData<F: TableSchema, R: TableReplication> { system: Arc<System>, pub instance: F, pub replication: R, pub store: db::Tree, pub(crate) merkle_tree: db::Tree, pub(crate) merkle_todo: db::Tree, pub(crate) merkle_todo_notify: Notify, pub(crate) insert_queue: db::Tree, pub(crate) insert_queue_notify: Arc<Notify>, pub(crate) gc_todo: CountedTree, pub(crate) metrics: TableMetrics, } impl<F: TableSchema, R: TableReplication> TableData<F, R> { pub fn new(system: Arc<System>, instance: F, replication: R, db: &db::Db) -> Arc<Self> { let store = db .open_tree(format!("{}:table", F::TABLE_NAME)) .expect("Unable to open DB tree"); let merkle_tree = db .open_tree(format!("{}:merkle_tree", F::TABLE_NAME)) .expect("Unable to open DB Merkle tree tree"); let merkle_todo = db .open_tree(format!("{}:merkle_todo", F::TABLE_NAME)) .expect("Unable to open DB Merkle TODO tree"); let insert_queue = db .open_tree(format!("{}:insert_queue", F::TABLE_NAME)) .expect("Unable to open insert queue DB tree"); let gc_todo = db .open_tree(format!("{}:gc_todo_v2", F::TABLE_NAME)) .expect("Unable to open GC DB tree"); let gc_todo = CountedTree::new(gc_todo).expect("Cannot count gc_todo_v2"); let metrics = TableMetrics::new( F::TABLE_NAME, store.clone(), merkle_tree.clone(), merkle_todo.clone(), gc_todo.clone(), ); Arc::new(Self { system, instance, replication, store, merkle_tree, merkle_todo, merkle_todo_notify: Notify::new(), insert_queue, insert_queue_notify: Arc::new(Notify::new()), gc_todo, metrics, }) } // Read functions pub fn read_entry(&self, p: &F::P, s: &F::S) -> Result<Option<ByteBuf>, Error> { let tree_key = self.tree_key(p, s); if let Some(bytes) = self.store.get(tree_key)? { Ok(Some(ByteBuf::from(bytes.to_vec()))) } else { Ok(None) } } pub fn read_range( &self, partition_key: &F::P, start: &Option<F::S>, filter: &Option<F::Filter>, limit: usize, enumeration_order: EnumerationOrder, ) -> Result<Vec<Arc<ByteBuf>>, Error> { let partition_hash = partition_key.hash(); match enumeration_order { EnumerationOrder::Forward => { let first_key = match start { None => partition_hash.to_vec(), Some(sk) => self.tree_key(partition_key, sk), }; let range = self.store.range(first_key..)?; self.read_range_aux(partition_hash, range, filter, limit) } EnumerationOrder::Reverse => match start { Some(sk) => { let last_key = self.tree_key(partition_key, sk); let range = self.store.range_rev(..=last_key)?; self.read_range_aux(partition_hash, range, filter, limit) } None => { let mut last_key = partition_hash.to_vec(); let lower = u128::from_be_bytes(last_key[16..32].try_into().unwrap()); last_key[16..32].copy_from_slice(&u128::to_be_bytes(lower + 1)); let range = self.store.range_rev(..last_key)?; self.read_range_aux(partition_hash, range, filter, limit) } }, } } fn read_range_aux( &self, partition_hash: Hash, range: db::ValueIter, filter: &Option<F::Filter>, limit: usize, ) -> Result<Vec<Arc<ByteBuf>>, Error> { let mut ret = vec![]; for item in range { let (key, value) = item?; if &key[..32] != partition_hash.as_slice() { break; } let keep = match filter { None => true, Some(f) => { let entry = self.decode_entry(value.as_ref())?; F::matches_filter(&entry, f) } }; if keep { ret.push(Arc::new(ByteBuf::from(value))); } if ret.len() >= limit { break; } } Ok(ret) } // Mutation functions // When changing this code, take care of propagating modifications correctly: // - When an entry is modified or deleted, call the updated() function // on the table instance // - When an entry is modified or deleted, add it to the merkle updater's todo list. // This has to be done atomically with the modification for the merkle updater // to maintain consistency. The merkle updater must then be notified with todo_notify. // - When an entry is updated to be a tombstone, add it to the gc_todo tree pub(crate) fn update_many<T: Borrow<ByteBuf>>(&self, entries: &[T]) -> Result<(), Error> { for update_bytes in entries.iter() { self.update_entry(update_bytes.borrow().as_slice())?; } Ok(()) } pub(crate) fn update_entry(&self, update_bytes: &[u8]) -> Result<(), Error> { let update = self.decode_entry(update_bytes)?; self.update_entry_with( update.partition_key(), update.sort_key(), |_tx, ent| match ent { Some(mut ent) => { ent.merge(&update); Ok(ent) } None => Ok(update.clone()), }, )?; Ok(()) } pub fn update_entry_with( &self, partition_key: &F::P, sort_key: &F::S, update_fn: impl Fn(&mut db::Transaction, Option<F::E>) -> db::TxOpResult<F::E>, ) -> Result<Option<F::E>, Error> { let tree_key = self.tree_key(partition_key, sort_key); let changed = self.store.db().transaction(|tx| { let (old_entry, old_bytes, new_entry) = match tx.get(&self.store, &tree_key)? { Some(old_bytes) => { let old_entry = self.decode_entry(&old_bytes).map_err(db::TxError::Abort)?; let new_entry = update_fn(tx, Some(old_entry.clone()))?; (Some(old_entry), Some(old_bytes), new_entry) } None => (None, None, update_fn(tx, None)?), }; // Changed can be true in two scenarios // Scenario 1: the actual represented value changed, // so of course the messagepack encoding changed as well // Scenario 2: the value didn't change but due to a migration in the // data format, the messagepack encoding changed. In this case, // we also have to write the migrated value in the table and update // the associated Merkle tree entry. let new_bytes = new_entry .encode() .map_err(Error::RmpEncode) .map_err(db::TxError::Abort)?; let changed = Some(&new_bytes[..]) != old_bytes.as_deref(); drop(old_bytes); if changed { let new_bytes_hash = blake2sum(&new_bytes); tx.insert(&self.merkle_todo, &tree_key, new_bytes_hash.as_slice())?; tx.insert(&self.store, &tree_key, new_bytes)?; self.instance .updated(tx, old_entry.as_ref(), Some(&new_entry))?; Ok(Some((new_entry, new_bytes_hash))) } else { Ok(None) } })?; if let Some((new_entry, new_bytes_hash)) = changed { self.metrics.internal_update_counter.add(1); let is_tombstone = new_entry.is_tombstone(); self.merkle_todo_notify.notify_one(); if is_tombstone { // We are only responsible for GC'ing this item if we are the // "leader" of the partition, i.e. the first node in the // set of nodes that replicates this partition. // This avoids GC loops and does not change the termination properties // of the GC algorithm, as in all cases GC is suspended if // any node of the partition is unavailable. let pk_hash = Hash::try_from(&tree_key[..32]).unwrap(); let nodes = self.replication.write_nodes(&pk_hash); if nodes.first() == Some(&self.system.id) { GcTodoEntry::new(tree_key, new_bytes_hash).save(&self.gc_todo)?; } } Ok(Some(new_entry)) } else { Ok(None) } } pub(crate) fn delete_if_equal(self: &Arc<Self>, k: &[u8], v: &[u8]) -> Result<bool, Error> { let removed = self .store .db() .transaction(|tx| match tx.get(&self.store, k)? { Some(cur_v) if cur_v == v => { let old_entry = self.decode_entry(v).map_err(db::TxError::Abort)?; tx.remove(&self.store, k)?; tx.insert(&self.merkle_todo, k, vec![])?; self.instance.updated(tx, Some(&old_entry), None)?; Ok(true) } _ => Ok(false), })?; if removed { self.metrics.internal_delete_counter.add(1); self.merkle_todo_notify.notify_one(); } Ok(removed) } pub(crate) fn delete_if_equal_hash( self: &Arc<Self>, k: &[u8], vhash: Hash, ) -> Result<bool, Error> { let removed = self .store .db() .transaction(|tx| match tx.get(&self.store, k)? { Some(cur_v) if blake2sum(&cur_v[..]) == vhash => { let old_entry = self.decode_entry(&cur_v[..]).map_err(db::TxError::Abort)?; tx.remove(&self.store, k)?; tx.insert(&self.merkle_todo, k, vec![])?; self.instance.updated(tx, Some(&old_entry), None)?; Ok(true) } _ => Ok(false), })?; if removed { self.metrics.internal_delete_counter.add(1); self.merkle_todo_notify.notify_one(); } Ok(removed) } // ---- Insert queue functions ---- pub(crate) fn queue_insert( &self, tx: &mut db::Transaction, ins: &F::E, ) -> db::TxResult<(), Error> { let tree_key = self.tree_key(ins.partition_key(), ins.sort_key()); let new_entry = match tx.get(&self.insert_queue, &tree_key)? { Some(old_v) => { let mut entry = self.decode_entry(&old_v).map_err(db::TxError::Abort)?; entry.merge(ins); entry.encode() } None => ins.encode(), }; let new_entry = new_entry .map_err(Error::RmpEncode) .map_err(db::TxError::Abort)?; tx.insert(&self.insert_queue, &tree_key, new_entry)?; let notif = self.insert_queue_notify.clone(); tx.on_commit(move || notif.notify_one()); Ok(()) } // ---- Utility functions ---- pub fn tree_key(&self, p: &F::P, s: &F::S) -> Vec<u8> { [p.hash().as_slice(), s.sort_key()].concat() } pub fn decode_entry(&self, bytes: &[u8]) -> Result<F::E, Error> { match F::E::decode(bytes) { Some(x) => Ok(x), None => { error!("Unable to decode entry of {}", F::TABLE_NAME); for line in hexdump::hexdump_iter(bytes) { debug!("{}", line); } Err(Error::Message(format!( "Unable to decode entry of {}", F::TABLE_NAME ))) } } } pub fn gc_todo_len(&self) -> Result<usize, Error> { Ok(self.gc_todo.len()) } }