//! Module containing structs related to membership management use std::collections::HashMap; use std::io::{Read, Write}; use std::net::{IpAddr, SocketAddr}; use std::path::{Path, PathBuf}; use std::sync::atomic::Ordering; use std::sync::{Arc, RwLock}; use std::time::{Duration, Instant}; use arc_swap::ArcSwap; use async_trait::async_trait; use futures::join; use serde::{Deserialize, Serialize}; use sodiumoxide::crypto::sign::ed25519; use tokio::select; use tokio::sync::watch; use tokio::sync::Mutex; use netapp::endpoint::{Endpoint, EndpointHandler}; use netapp::message::*; use netapp::peering::fullmesh::FullMeshPeeringStrategy; use netapp::util::parse_and_resolve_peer_addr_async; use netapp::{NetApp, NetworkKey, NodeID, NodeKey}; #[cfg(feature = "kubernetes-discovery")] use garage_util::config::KubernetesDiscoveryConfig; use garage_util::config::{Config, DataDirEnum}; use garage_util::data::*; use garage_util::error::*; use garage_util::persister::Persister; use garage_util::time::*; #[cfg(feature = "consul-discovery")] use crate::consul::ConsulDiscovery; #[cfg(feature = "kubernetes-discovery")] use crate::kubernetes::*; use crate::layout::*; use crate::replication_mode::*; use crate::ring::*; use crate::rpc_helper::*; use crate::system_metrics::*; const DISCOVERY_INTERVAL: Duration = Duration::from_secs(60); const STATUS_EXCHANGE_INTERVAL: Duration = Duration::from_secs(10); /// Version tag used for version check upon Netapp connection. /// Cluster nodes with different version tags are deemed /// incompatible and will refuse to connect. pub const GARAGE_VERSION_TAG: u64 = 0x6761726167650008; // garage 0x0008 /// RPC endpoint used for calls related to membership pub const SYSTEM_RPC_PATH: &str = "garage_rpc/membership.rs/SystemRpc"; /// RPC messages related to membership #[derive(Debug, Serialize, Deserialize, Clone)] pub enum SystemRpc { /// Response to successfull advertisements Ok, /// Request to connect to a specific node (in <pubkey>@<host>:<port> format, pubkey = full-length node ID) Connect(String), /// Ask other node its cluster layout. Answered with AdvertiseClusterLayout PullClusterLayout, /// Advertise Garage status. Answered with another AdvertiseStatus. /// Exchanged with every node on a regular basis. AdvertiseStatus(NodeStatus), /// Advertisement of cluster layout. Sent spontanously or in response to PullClusterLayout AdvertiseClusterLayout(ClusterLayout), /// Get known nodes states GetKnownNodes, /// Return known nodes ReturnKnownNodes(Vec<KnownNodeInfo>), } impl Rpc for SystemRpc { type Response = Result<SystemRpc, Error>; } #[derive(Serialize, Deserialize)] pub struct PeerList(Vec<(Uuid, SocketAddr)>); impl garage_util::migrate::InitialFormat for PeerList {} /// This node's membership manager pub struct System { /// The id of this node pub id: Uuid, persist_cluster_layout: Persister<ClusterLayout>, persist_peer_list: Persister<PeerList>, local_status: ArcSwap<NodeStatus>, node_status: RwLock<HashMap<Uuid, (u64, NodeStatus)>>, pub netapp: Arc<NetApp>, fullmesh: Arc<FullMeshPeeringStrategy>, pub rpc: RpcHelper, system_endpoint: Arc<Endpoint<SystemRpc, System>>, rpc_listen_addr: SocketAddr, #[cfg(any(feature = "consul-discovery", feature = "kubernetes-discovery"))] rpc_public_addr: Option<SocketAddr>, bootstrap_peers: Vec<String>, #[cfg(feature = "consul-discovery")] consul_discovery: Option<ConsulDiscovery>, #[cfg(feature = "kubernetes-discovery")] kubernetes_discovery: Option<KubernetesDiscoveryConfig>, metrics: SystemMetrics, replication_mode: ReplicationMode, replication_factor: usize, /// The ring pub ring: watch::Receiver<Arc<Ring>>, update_ring: Mutex<watch::Sender<Arc<Ring>>>, /// Path to metadata directory pub metadata_dir: PathBuf, /// Path to data directory pub data_dir: DataDirEnum, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct NodeStatus { /// Hostname of the node pub hostname: String, /// Replication factor configured on the node pub replication_factor: usize, /// Cluster layout version pub cluster_layout_version: u64, /// Hash of cluster layout staging data pub cluster_layout_staging_hash: Hash, /// Disk usage on partition containing metadata directory (tuple: `(avail, total)`) #[serde(default)] pub meta_disk_avail: Option<(u64, u64)>, /// Disk usage on partition containing data directory (tuple: `(avail, total)`) #[serde(default)] pub data_disk_avail: Option<(u64, u64)>, } #[derive(Debug, Clone, Serialize, Deserialize)] pub struct KnownNodeInfo { pub id: Uuid, pub addr: SocketAddr, pub is_up: bool, pub last_seen_secs_ago: Option<u64>, pub status: NodeStatus, } #[derive(Debug, Clone, Copy)] pub struct ClusterHealth { /// The current health status of the cluster (see below) pub status: ClusterHealthStatus, /// Number of nodes already seen once in the cluster pub known_nodes: usize, /// Number of nodes currently connected pub connected_nodes: usize, /// Number of storage nodes declared in the current layout pub storage_nodes: usize, /// Number of storage nodes currently connected pub storage_nodes_ok: usize, /// Number of partitions in the layout pub partitions: usize, /// Number of partitions for which we have a quorum of connected nodes pub partitions_quorum: usize, /// Number of partitions for which all storage nodes are connected pub partitions_all_ok: usize, } #[derive(Debug, Clone, Copy)] pub enum ClusterHealthStatus { /// All nodes are available Healthy, /// Some storage nodes are unavailable, but quorum is stil /// achieved for all partitions Degraded, /// Quorum is not available for some partitions Unavailable, } pub fn read_node_id(metadata_dir: &Path) -> Result<NodeID, Error> { let mut pubkey_file = metadata_dir.to_path_buf(); pubkey_file.push("node_key.pub"); let mut f = std::fs::File::open(pubkey_file.as_path())?; let mut d = vec![]; f.read_to_end(&mut d)?; if d.len() != 32 { return Err(Error::Message("Corrupt node_key.pub file".to_string())); } let mut key = [0u8; 32]; key.copy_from_slice(&d[..]); Ok(NodeID::from_slice(&key[..]).unwrap()) } pub fn gen_node_key(metadata_dir: &Path) -> Result<NodeKey, Error> { let mut key_file = metadata_dir.to_path_buf(); key_file.push("node_key"); if key_file.as_path().exists() { let mut f = std::fs::File::open(key_file.as_path())?; let mut d = vec![]; f.read_to_end(&mut d)?; if d.len() != 64 { return Err(Error::Message("Corrupt node_key file".to_string())); } let mut key = [0u8; 64]; key.copy_from_slice(&d[..]); Ok(NodeKey::from_slice(&key[..]).unwrap()) } else { if !metadata_dir.exists() { info!("Metadata directory does not exist, creating it."); std::fs::create_dir(metadata_dir)?; } info!("Generating new node key pair."); let (pubkey, key) = ed25519::gen_keypair(); { use std::os::unix::fs::PermissionsExt; let mut f = std::fs::File::create(key_file.as_path())?; let mut perm = f.metadata()?.permissions(); perm.set_mode(0o600); std::fs::set_permissions(key_file.as_path(), perm)?; f.write_all(&key[..])?; } { let mut pubkey_file = metadata_dir.to_path_buf(); pubkey_file.push("node_key.pub"); let mut f2 = std::fs::File::create(pubkey_file.as_path())?; f2.write_all(&pubkey[..])?; } Ok(key) } } impl System { /// Create this node's membership manager pub fn new( network_key: NetworkKey, replication_mode: ReplicationMode, config: &Config, ) -> Result<Arc<Self>, Error> { let replication_factor = replication_mode.replication_factor(); let node_key = gen_node_key(&config.metadata_dir).expect("Unable to read or generate node ID"); info!( "Node ID of this node: {}", hex::encode(&node_key.public_key()[..8]) ); let persist_cluster_layout: Persister<ClusterLayout> = Persister::new(&config.metadata_dir, "cluster_layout"); let persist_peer_list = Persister::new(&config.metadata_dir, "peer_list"); let cluster_layout = match persist_cluster_layout.load() { Ok(x) => { if x.replication_factor != replication_factor { return Err(Error::Message(format!( "Prevous cluster layout has replication factor {}, which is different than the one specified in the config file ({}). The previous cluster layout can be purged, if you know what you are doing, simply by deleting the `cluster_layout` file in your metadata directory.", x.replication_factor, replication_factor ))); } x } Err(e) => { info!( "No valid previous cluster layout stored ({}), starting fresh.", e ); ClusterLayout::new(replication_factor) } }; let metrics = SystemMetrics::new(replication_factor); let mut local_status = NodeStatus::initial(replication_factor, &cluster_layout); local_status.update_disk_usage(&config.metadata_dir, &config.data_dir, &metrics); let ring = Ring::new(cluster_layout, replication_factor); let (update_ring, ring) = watch::channel(Arc::new(ring)); let rpc_public_addr = match &config.rpc_public_addr { Some(a_str) => { use std::net::ToSocketAddrs; match a_str.to_socket_addrs() { Err(e) => { error!( "Cannot resolve rpc_public_addr {} from config file: {}.", a_str, e ); None } Ok(a) => { let a = a.collect::<Vec<_>>(); if a.is_empty() { error!("rpc_public_addr {} resolve to no known IP address", a_str); } if a.len() > 1 { warn!("Multiple possible resolutions for rpc_public_addr: {:?}. Taking the first one.", a); } a.into_iter().next() } } } None => { let addr = get_default_ip().map(|ip| SocketAddr::new(ip, config.rpc_bind_addr.port())); if let Some(a) = addr { warn!("Using autodetected rpc_public_addr: {}. Consider specifying it explicitly in configuration file if possible.", a); } addr } }; if rpc_public_addr.is_none() { warn!("This Garage node does not know its publicly reachable RPC address, this might hamper intra-cluster communication."); } let netapp = NetApp::new(GARAGE_VERSION_TAG, network_key, node_key); let fullmesh = FullMeshPeeringStrategy::new(netapp.clone(), vec![], rpc_public_addr); if let Some(ping_timeout) = config.rpc_ping_timeout_msec { fullmesh.set_ping_timeout_millis(ping_timeout); } let system_endpoint = netapp.endpoint(SYSTEM_RPC_PATH.into()); #[cfg(feature = "consul-discovery")] let consul_discovery = match &config.consul_discovery { Some(cfg) => Some( ConsulDiscovery::new(cfg.clone()) .ok_or_message("Invalid Consul discovery configuration")?, ), None => None, }; #[cfg(not(feature = "consul-discovery"))] if config.consul_discovery.is_some() { warn!("Consul discovery is not enabled in this build."); } #[cfg(not(feature = "kubernetes-discovery"))] if config.kubernetes_discovery.is_some() { warn!("Kubernetes discovery is not enabled in this build."); } let sys = Arc::new(System { id: netapp.id.into(), persist_cluster_layout, persist_peer_list, local_status: ArcSwap::new(Arc::new(local_status)), node_status: RwLock::new(HashMap::new()), netapp: netapp.clone(), fullmesh: fullmesh.clone(), rpc: RpcHelper::new( netapp.id.into(), fullmesh, ring.clone(), config.rpc_timeout_msec.map(Duration::from_millis), ), system_endpoint, replication_mode, replication_factor, rpc_listen_addr: config.rpc_bind_addr, #[cfg(any(feature = "consul-discovery", feature = "kubernetes-discovery"))] rpc_public_addr, bootstrap_peers: config.bootstrap_peers.clone(), #[cfg(feature = "consul-discovery")] consul_discovery, #[cfg(feature = "kubernetes-discovery")] kubernetes_discovery: config.kubernetes_discovery.clone(), metrics, ring, update_ring: Mutex::new(update_ring), metadata_dir: config.metadata_dir.clone(), data_dir: config.data_dir.clone(), }); sys.system_endpoint.set_handler(sys.clone()); Ok(sys) } /// Perform bootstraping, starting the ping loop pub async fn run(self: Arc<Self>, must_exit: watch::Receiver<bool>) { join!( self.netapp .clone() .listen(self.rpc_listen_addr, None, must_exit.clone()), self.fullmesh.clone().run(must_exit.clone()), self.discovery_loop(must_exit.clone()), self.status_exchange_loop(must_exit.clone()), ); } // ---- Administrative operations (directly available and // also available through RPC) ---- pub fn get_known_nodes(&self) -> Vec<KnownNodeInfo> { let node_status = self.node_status.read().unwrap(); let known_nodes = self .fullmesh .get_peer_list() .iter() .map(|n| KnownNodeInfo { id: n.id.into(), addr: n.addr, is_up: n.is_up(), last_seen_secs_ago: n .last_seen .map(|t| (Instant::now().saturating_duration_since(t)).as_secs()), status: node_status .get(&n.id.into()) .cloned() .map(|(_, st)| st) .unwrap_or_else(NodeStatus::unknown), }) .collect::<Vec<_>>(); known_nodes } pub fn get_cluster_layout(&self) -> ClusterLayout { self.ring.borrow().layout.clone() } pub async fn update_cluster_layout( self: &Arc<Self>, layout: &ClusterLayout, ) -> Result<(), Error> { self.handle_advertise_cluster_layout(layout).await?; Ok(()) } pub async fn connect(&self, node: &str) -> Result<(), Error> { let (pubkey, addrs) = parse_and_resolve_peer_addr_async(node) .await .ok_or_else(|| { Error::Message(format!( "Unable to parse or resolve node specification: {}", node )) })?; let mut errors = vec![]; for addr in addrs.iter() { match self.netapp.clone().try_connect(*addr, pubkey).await { Ok(()) => return Ok(()), Err(e) => { errors.push(( *addr, Error::Message(connect_error_message(*addr, pubkey, e)), )); } } } if errors.len() == 1 { Err(Error::Message(errors[0].1.to_string())) } else { Err(Error::Message(format!("{:?}", errors))) } } pub fn health(&self) -> ClusterHealth { let ring: Arc<_> = self.ring.borrow().clone(); let quorum = self.replication_mode.write_quorum(); let replication_factor = self.replication_factor; let nodes = self .get_known_nodes() .into_iter() .map(|n| (n.id, n)) .collect::<HashMap<Uuid, _>>(); let connected_nodes = nodes.iter().filter(|(_, n)| n.is_up).count(); let storage_nodes = ring .layout .roles .items() .iter() .filter(|(_, _, v)| matches!(v, NodeRoleV(Some(r)) if r.capacity.is_some())) .collect::<Vec<_>>(); let storage_nodes_ok = storage_nodes .iter() .filter(|(x, _, _)| nodes.get(x).map(|n| n.is_up).unwrap_or(false)) .count(); let partitions = ring.partitions(); let partitions_n_up = partitions .iter() .map(|(_, h)| { let pn = ring.get_nodes(h, ring.replication_factor); pn.iter() .filter(|x| nodes.get(x).map(|n| n.is_up).unwrap_or(false)) .count() }) .collect::<Vec<usize>>(); let partitions_all_ok = partitions_n_up .iter() .filter(|c| **c == replication_factor) .count(); let partitions_quorum = partitions_n_up.iter().filter(|c| **c >= quorum).count(); let status = if partitions_quorum == partitions.len() && storage_nodes_ok == storage_nodes.len() { ClusterHealthStatus::Healthy } else if partitions_quorum == partitions.len() { ClusterHealthStatus::Degraded } else { ClusterHealthStatus::Unavailable }; ClusterHealth { status, known_nodes: nodes.len(), connected_nodes, storage_nodes: storage_nodes.len(), storage_nodes_ok, partitions: partitions.len(), partitions_quorum, partitions_all_ok, } } // ---- INTERNALS ---- #[cfg(feature = "consul-discovery")] async fn advertise_to_consul(self: Arc<Self>) { let c = match &self.consul_discovery { Some(c) => c, _ => return, }; let rpc_public_addr = match self.rpc_public_addr { Some(addr) => addr, None => { warn!("Not advertising to Consul because rpc_public_addr is not defined in config file and could not be autodetected."); return; } }; if let Err(e) = c .publish_consul_service( self.netapp.id, &self.local_status.load_full().hostname, rpc_public_addr, ) .await { error!("Error while publishing Consul service: {}", e); } } #[cfg(feature = "kubernetes-discovery")] async fn advertise_to_kubernetes(self: Arc<Self>) { let k = match &self.kubernetes_discovery { Some(k) => k, _ => return, }; let rpc_public_addr = match self.rpc_public_addr { Some(addr) => addr, None => { warn!("Not advertising to Kubernetes because rpc_public_addr is not defined in config file and could not be autodetected."); return; } }; if let Err(e) = publish_kubernetes_node( k, self.netapp.id, &self.local_status.load_full().hostname, rpc_public_addr, ) .await { error!("Error while publishing node to Kubernetes: {}", e); } } /// Save network configuration to disc async fn save_cluster_layout(&self) -> Result<(), Error> { let ring: Arc<Ring> = self.ring.borrow().clone(); self.persist_cluster_layout .save_async(&ring.layout) .await .expect("Cannot save current cluster layout"); Ok(()) } fn update_local_status(&self) { let mut new_si: NodeStatus = self.local_status.load().as_ref().clone(); let ring = self.ring.borrow(); new_si.cluster_layout_version = ring.layout.version; new_si.cluster_layout_staging_hash = ring.layout.staging_hash; new_si.update_disk_usage(&self.metadata_dir, &self.data_dir, &self.metrics); self.local_status.swap(Arc::new(new_si)); } // --- RPC HANDLERS --- async fn handle_connect(&self, node: &str) -> Result<SystemRpc, Error> { self.connect(node).await?; Ok(SystemRpc::Ok) } fn handle_pull_cluster_layout(&self) -> SystemRpc { let ring = self.ring.borrow().clone(); SystemRpc::AdvertiseClusterLayout(ring.layout.clone()) } fn handle_get_known_nodes(&self) -> SystemRpc { let known_nodes = self.get_known_nodes(); SystemRpc::ReturnKnownNodes(known_nodes) } async fn handle_advertise_status( self: &Arc<Self>, from: Uuid, info: &NodeStatus, ) -> Result<SystemRpc, Error> { let local_info = self.local_status.load(); if local_info.replication_factor < info.replication_factor { error!("Some node have a higher replication factor ({}) than this one ({}). This is not supported and will lead to data corruption. Shutting down for safety.", info.replication_factor, local_info.replication_factor); std::process::exit(1); } if info.cluster_layout_version > local_info.cluster_layout_version || info.cluster_layout_staging_hash != local_info.cluster_layout_staging_hash { tokio::spawn(self.clone().pull_cluster_layout(from)); } self.node_status .write() .unwrap() .insert(from, (now_msec(), info.clone())); Ok(SystemRpc::Ok) } async fn handle_advertise_cluster_layout( self: &Arc<Self>, adv: &ClusterLayout, ) -> Result<SystemRpc, Error> { if adv.replication_factor != self.replication_factor { let msg = format!( "Received a cluster layout from another node with replication factor {}, which is different from what we have in our configuration ({}). Discarding the cluster layout we received.", adv.replication_factor, self.replication_factor ); error!("{}", msg); return Err(Error::Message(msg)); } let update_ring = self.update_ring.lock().await; let mut layout: ClusterLayout = self.ring.borrow().layout.clone(); let prev_layout_check = layout.check().is_ok(); if layout.merge(adv) { if prev_layout_check && layout.check().is_err() { error!("New cluster layout is invalid, discarding."); return Err(Error::Message( "New cluster layout is invalid, discarding.".into(), )); } let ring = Ring::new(layout.clone(), self.replication_factor); update_ring.send(Arc::new(ring))?; drop(update_ring); let self2 = self.clone(); tokio::spawn(async move { if let Err(e) = self2 .rpc .broadcast( &self2.system_endpoint, SystemRpc::AdvertiseClusterLayout(layout), RequestStrategy::with_priority(PRIO_HIGH), ) .await { warn!("Error while broadcasting new cluster layout: {}", e); } }); self.save_cluster_layout().await?; } Ok(SystemRpc::Ok) } async fn status_exchange_loop(&self, mut stop_signal: watch::Receiver<bool>) { while !*stop_signal.borrow() { let restart_at = Instant::now() + STATUS_EXCHANGE_INTERVAL; self.update_local_status(); let local_status: NodeStatus = self.local_status.load().as_ref().clone(); let _ = self .rpc .broadcast( &self.system_endpoint, SystemRpc::AdvertiseStatus(local_status), RequestStrategy::with_priority(PRIO_HIGH) .with_custom_timeout(STATUS_EXCHANGE_INTERVAL), ) .await; select! { _ = tokio::time::sleep_until(restart_at.into()) => {}, _ = stop_signal.changed() => {}, } } } async fn discovery_loop(self: &Arc<Self>, mut stop_signal: watch::Receiver<bool>) { while !*stop_signal.borrow() { let not_configured = self.ring.borrow().layout.check().is_err(); let no_peers = self.fullmesh.get_peer_list().len() < self.replication_factor; let expected_n_nodes = self.ring.borrow().layout.num_nodes(); let bad_peers = self .fullmesh .get_peer_list() .iter() .filter(|p| p.is_up()) .count() != expected_n_nodes; if not_configured || no_peers || bad_peers { info!("Doing a bootstrap/discovery step (not_configured: {}, no_peers: {}, bad_peers: {})", not_configured, no_peers, bad_peers); let mut ping_list = resolve_peers(&self.bootstrap_peers).await; // Add peer list from list stored on disk if let Ok(peers) = self.persist_peer_list.load_async().await { ping_list.extend(peers.0.iter().map(|(id, addr)| ((*id).into(), *addr))) } // Fetch peer list from Consul #[cfg(feature = "consul-discovery")] if let Some(c) = &self.consul_discovery { match c.get_consul_nodes().await { Ok(node_list) => { ping_list.extend(node_list); } Err(e) => { warn!("Could not retrieve node list from Consul: {}", e); } } } // Fetch peer list from Kubernetes #[cfg(feature = "kubernetes-discovery")] if let Some(k) = &self.kubernetes_discovery { if !k.skip_crd { match create_kubernetes_crd().await { Ok(()) => (), Err(e) => { error!("Failed to create kubernetes custom resource: {}", e) } }; } match get_kubernetes_nodes(k).await { Ok(node_list) => { ping_list.extend(node_list); } Err(e) => { warn!("Could not retrieve node list from Kubernetes: {}", e); } } } for (node_id, node_addr) in ping_list { let self2 = self.clone(); tokio::spawn(async move { if let Err(e) = self2.netapp.clone().try_connect(node_addr, node_id).await { error!("{}", connect_error_message(node_addr, node_id, e)); } }); } } if let Err(e) = self.save_peer_list().await { warn!("Could not save peer list to file: {}", e); } #[cfg(feature = "consul-discovery")] tokio::spawn(self.clone().advertise_to_consul()); #[cfg(feature = "kubernetes-discovery")] tokio::spawn(self.clone().advertise_to_kubernetes()); select! { _ = tokio::time::sleep(DISCOVERY_INTERVAL) => {}, _ = stop_signal.changed() => {}, } } } async fn save_peer_list(&self) -> Result<(), Error> { // Prepare new peer list to save to file // It is a vec of tuples (node ID as Uuid, node SocketAddr) let mut peer_list = self .fullmesh .get_peer_list() .iter() .map(|n| (n.id.into(), n.addr)) .collect::<Vec<_>>(); // Before doing it, we read the current peer list file (if it exists) // and append it to the list we are about to save, // so that no peer ID gets lost in the process. if let Ok(mut prev_peer_list) = self.persist_peer_list.load_async().await { prev_peer_list .0 .retain(|(id, _ip)| peer_list.iter().all(|(id2, _ip2)| id2 != id)); peer_list.extend(prev_peer_list.0); } // Save new peer list to file self.persist_peer_list .save_async(&PeerList(peer_list)) .await } async fn pull_cluster_layout(self: Arc<Self>, peer: Uuid) { let resp = self .rpc .call( &self.system_endpoint, peer, SystemRpc::PullClusterLayout, RequestStrategy::with_priority(PRIO_HIGH), ) .await; if let Ok(SystemRpc::AdvertiseClusterLayout(layout)) = resp { let _: Result<_, _> = self.handle_advertise_cluster_layout(&layout).await; } } } #[async_trait] impl EndpointHandler<SystemRpc> for System { async fn handle(self: &Arc<Self>, msg: &SystemRpc, from: NodeID) -> Result<SystemRpc, Error> { match msg { SystemRpc::Connect(node) => self.handle_connect(node).await, SystemRpc::PullClusterLayout => Ok(self.handle_pull_cluster_layout()), SystemRpc::AdvertiseStatus(adv) => self.handle_advertise_status(from.into(), adv).await, SystemRpc::AdvertiseClusterLayout(adv) => { self.clone().handle_advertise_cluster_layout(adv).await } SystemRpc::GetKnownNodes => Ok(self.handle_get_known_nodes()), m => Err(Error::unexpected_rpc_message(m)), } } } impl NodeStatus { fn initial(replication_factor: usize, layout: &ClusterLayout) -> Self { NodeStatus { hostname: gethostname::gethostname() .into_string() .unwrap_or_else(|_| "<invalid utf-8>".to_string()), replication_factor, cluster_layout_version: layout.version, cluster_layout_staging_hash: layout.staging_hash, meta_disk_avail: None, data_disk_avail: None, } } fn unknown() -> Self { NodeStatus { hostname: "?".to_string(), replication_factor: 0, cluster_layout_version: 0, cluster_layout_staging_hash: Hash::from([0u8; 32]), meta_disk_avail: None, data_disk_avail: None, } } fn update_disk_usage( &mut self, meta_dir: &Path, data_dir: &DataDirEnum, metrics: &SystemMetrics, ) { use nix::sys::statvfs::statvfs; let mount_avail = |path: &Path| match statvfs(path) { Ok(x) => { let avail = x.blocks_available() as u64 * x.fragment_size() as u64; let total = x.blocks() as u64 * x.fragment_size() as u64; Some((x.filesystem_id(), avail, total)) } Err(_) => None, }; self.meta_disk_avail = mount_avail(meta_dir).map(|(_, a, t)| (a, t)); self.data_disk_avail = match data_dir { DataDirEnum::Single(dir) => mount_avail(dir).map(|(_, a, t)| (a, t)), DataDirEnum::Multiple(dirs) => (|| { // TODO: more precise calculation that takes into account // how data is going to be spread among partitions let mut mounts = HashMap::new(); for dir in dirs.iter() { if dir.capacity.is_none() { continue; } match mount_avail(&dir.path) { Some((fsid, avail, total)) => { mounts.insert(fsid, (avail, total)); } None => return None, } } Some( mounts .into_iter() .fold((0, 0), |(x, y), (_, (a, b))| (x + a, y + b)), ) })(), }; if let Some((avail, total)) = self.meta_disk_avail { metrics .values .meta_disk_avail .store(avail, Ordering::Relaxed); metrics .values .meta_disk_total .store(total, Ordering::Relaxed); } if let Some((avail, total)) = self.data_disk_avail { metrics .values .data_disk_avail .store(avail, Ordering::Relaxed); metrics .values .data_disk_total .store(total, Ordering::Relaxed); } } } fn get_default_ip() -> Option<IpAddr> { pnet_datalink::interfaces() .iter() .find(|e| e.is_up() && !e.is_loopback() && !e.ips.is_empty()) .and_then(|e| e.ips.first()) .map(|a| a.ip()) } async fn resolve_peers(peers: &[String]) -> Vec<(NodeID, SocketAddr)> { let mut ret = vec![]; for peer in peers.iter() { match parse_and_resolve_peer_addr_async(peer).await { Some((pubkey, addrs)) => { for ip in addrs { ret.push((pubkey, ip)); } } None => { warn!("Unable to parse and/or resolve peer hostname {}", peer); } } } ret } fn connect_error_message( addr: SocketAddr, pubkey: ed25519::PublicKey, e: netapp::error::Error, ) -> String { format!("Error establishing RPC connection to remote node: {}@{}.\nThis can happen if the remote node is not reachable on the network, but also if the two nodes are not configured with the same rpc_secret.\n{}", hex::encode(pubkey), addr, e) }