//! Contain structs related to making RPCs use std::sync::Arc; use std::time::Duration; use futures::future::join_all; use futures::stream::futures_unordered::FuturesUnordered; use futures::stream::StreamExt; use futures_util::future::FutureExt; use tokio::select; use tokio::sync::{watch, Semaphore}; use opentelemetry::KeyValue; use opentelemetry::{ trace::{FutureExt as OtelFutureExt, Span, TraceContextExt, Tracer}, Context, }; pub use netapp::endpoint::{Endpoint, EndpointHandler, StreamingEndpointHandler}; use netapp::message::IntoReq; pub use netapp::message::{ Message as Rpc, OrderTag, Req, RequestPriority, Resp, PRIO_BACKGROUND, PRIO_HIGH, PRIO_NORMAL, PRIO_SECONDARY, }; use netapp::peering::fullmesh::FullMeshPeeringStrategy; pub use netapp::{self, NetApp, NodeID}; use garage_util::background::BackgroundRunner; use garage_util::data::*; use garage_util::error::Error; use garage_util::metrics::RecordDuration; use crate::metrics::RpcMetrics; use crate::ring::Ring; const DEFAULT_TIMEOUT: Duration = Duration::from_secs(30); // Don't allow more than 100 concurrent outgoing RPCs. const MAX_CONCURRENT_REQUESTS: usize = 100; /// Strategy to apply when making RPC #[derive(Copy, Clone)] pub struct RequestStrategy { /// Max time to wait for reponse pub rs_timeout: Duration, /// Min number of response to consider the request successful pub rs_quorum: Option<usize>, /// Should requests be dropped after enough response are received pub rs_interrupt_after_quorum: bool, /// Request priority pub rs_priority: RequestPriority, } impl RequestStrategy { /// Create a RequestStrategy with default timeout and not interrupting when quorum reached pub fn with_priority(prio: RequestPriority) -> Self { RequestStrategy { rs_timeout: DEFAULT_TIMEOUT, rs_quorum: None, rs_interrupt_after_quorum: false, rs_priority: prio, } } /// Set quorum to be reached for request pub fn with_quorum(mut self, quorum: usize) -> Self { self.rs_quorum = Some(quorum); self } /// Set timeout of the strategy pub fn with_timeout(mut self, timeout: Duration) -> Self { self.rs_timeout = timeout; self } /// Set if requests can be dropped after quorum has been reached /// In general true for read requests, and false for write pub fn interrupt_after_quorum(mut self, interrupt: bool) -> Self { self.rs_interrupt_after_quorum = interrupt; self } } #[derive(Clone)] pub struct RpcHelper(Arc<RpcHelperInner>); struct RpcHelperInner { our_node_id: Uuid, fullmesh: Arc<FullMeshPeeringStrategy>, background: Arc<BackgroundRunner>, ring: watch::Receiver<Arc<Ring>>, request_buffer_semaphore: Arc<Semaphore>, metrics: RpcMetrics, } impl RpcHelper { pub(crate) fn new( our_node_id: Uuid, fullmesh: Arc<FullMeshPeeringStrategy>, background: Arc<BackgroundRunner>, ring: watch::Receiver<Arc<Ring>>, ) -> Self { let sem = Arc::new(Semaphore::new(MAX_CONCURRENT_REQUESTS)); let metrics = RpcMetrics::new(sem.clone()); Self(Arc::new(RpcHelperInner { our_node_id, fullmesh, background, ring, request_buffer_semaphore: sem, metrics, })) } pub async fn call<M, N, H, S>( &self, endpoint: &Endpoint<M, H>, to: Uuid, msg: N, strat: RequestStrategy, ) -> Result<S, Error> where M: Rpc<Response = Result<S, Error>>, N: IntoReq<M> + Send, H: StreamingEndpointHandler<M>, { let metric_tags = [ KeyValue::new("rpc_endpoint", endpoint.path().to_string()), KeyValue::new("from", format!("{:?}", self.0.our_node_id)), KeyValue::new("to", format!("{:?}", to)), ]; let permit = self .0 .request_buffer_semaphore .acquire() .record_duration(&self.0.metrics.rpc_queueing_time, &metric_tags) .await?; self.0.metrics.rpc_counter.add(1, &metric_tags); let node_id = to.into(); let rpc_call = endpoint .call_streaming(&node_id, msg, strat.rs_priority) .record_duration(&self.0.metrics.rpc_duration, &metric_tags); select! { res = rpc_call => { drop(permit); if res.is_err() { self.0.metrics.rpc_netapp_error_counter.add(1, &metric_tags); } let res = res?.into_msg(); if res.is_err() { self.0.metrics.rpc_garage_error_counter.add(1, &metric_tags); } Ok(res?) } _ = tokio::time::sleep(strat.rs_timeout) => { drop(permit); self.0.metrics.rpc_timeout_counter.add(1, &metric_tags); Err(Error::Timeout) } } } pub async fn call_many<M, N, H, S>( &self, endpoint: &Endpoint<M, H>, to: &[Uuid], msg: N, strat: RequestStrategy, ) -> Result<Vec<(Uuid, Result<S, Error>)>, Error> where M: Rpc<Response = Result<S, Error>>, N: IntoReq<M>, H: StreamingEndpointHandler<M>, { let msg = msg.into_req().map_err(netapp::error::Error::from)?; let resps = join_all( to.iter() .map(|to| self.call(endpoint, *to, msg.clone(), strat)), ) .await; Ok(to .iter() .cloned() .zip(resps.into_iter()) .collect::<Vec<_>>()) } pub async fn broadcast<M, N, H, S>( &self, endpoint: &Endpoint<M, H>, msg: N, strat: RequestStrategy, ) -> Result<Vec<(Uuid, Result<S, Error>)>, Error> where M: Rpc<Response = Result<S, Error>>, N: IntoReq<M>, H: StreamingEndpointHandler<M>, { let to = self .0 .fullmesh .get_peer_list() .iter() .map(|p| p.id.into()) .collect::<Vec<_>>(); self.call_many(endpoint, &to[..], msg, strat).await } /// Make a RPC call to multiple servers, returning either a Vec of responses, /// or an error if quorum could not be reached due to too many errors pub async fn try_call_many<M, N, H, S>( &self, endpoint: &Arc<Endpoint<M, H>>, to: &[Uuid], msg: N, strategy: RequestStrategy, ) -> Result<Vec<S>, Error> where M: Rpc<Response = Result<S, Error>> + 'static, N: IntoReq<M>, H: StreamingEndpointHandler<M> + 'static, S: Send + 'static, { let quorum = strategy.rs_quorum.unwrap_or(to.len()); let tracer = opentelemetry::global::tracer("garage"); let span_name = if strategy.rs_interrupt_after_quorum { format!("RPC {} to {} of {}", endpoint.path(), quorum, to.len()) } else { format!( "RPC {} to {} (quorum {})", endpoint.path(), to.len(), quorum ) }; let mut span = tracer.start(span_name); span.set_attribute(KeyValue::new("from", format!("{:?}", self.0.our_node_id))); span.set_attribute(KeyValue::new("to", format!("{:?}", to))); span.set_attribute(KeyValue::new("quorum", quorum as i64)); span.set_attribute(KeyValue::new( "interrupt_after_quorum", strategy.rs_interrupt_after_quorum.to_string(), )); self.try_call_many_internal(endpoint, to, msg, strategy, quorum) .with_context(Context::current_with_span(span)) .await } async fn try_call_many_internal<M, N, H, S>( &self, endpoint: &Arc<Endpoint<M, H>>, to: &[Uuid], msg: N, strategy: RequestStrategy, quorum: usize, ) -> Result<Vec<S>, Error> where M: Rpc<Response = Result<S, Error>> + 'static, N: IntoReq<M>, H: StreamingEndpointHandler<M> + 'static, S: Send + 'static, { let msg = msg.into_req().map_err(netapp::error::Error::from)?; // Build future for each request // They are not started now: they are added below in a FuturesUnordered // object that will take care of polling them (see below) let requests = to.iter().cloned().map(|to| { let self2 = self.clone(); let msg = msg.clone(); let endpoint2 = endpoint.clone(); (to, async move { self2.call(&endpoint2, to, msg, strategy).await }) }); // Vectors in which success results and errors will be collected let mut successes = vec![]; let mut errors = vec![]; if strategy.rs_interrupt_after_quorum { // Case 1: once quorum is reached, other requests don't matter. // What we do here is only send the required number of requests // to reach a quorum, priorizing nodes with the lowest latency. // When there are errors, we start new requests to compensate. // Reorder requests to priorize closeness / low latency let request_order = self.request_order(to); let mut ord_requests = vec![(); request_order.len()] .into_iter() .map(|_| None) .collect::<Vec<_>>(); for (to, fut) in requests { let i = request_order.iter().position(|x| *x == to).unwrap(); ord_requests[i] = Some((to, fut)); } // Make an iterator to take requests in their sorted order let mut requests = ord_requests.into_iter().map(Option::unwrap); // resp_stream will contain all of the requests that are currently in flight. // (for the moment none, they will be added in the loop below) let mut resp_stream = FuturesUnordered::new(); // Do some requests and collect results 'request_loop: while successes.len() < quorum { // If the current set of requests that are running is not enough to possibly // reach quorum, start some new requests. while successes.len() + resp_stream.len() < quorum { if let Some((req_to, fut)) = requests.next() { let tracer = opentelemetry::global::tracer("garage"); let span = tracer.start(format!("RPC to {:?}", req_to)); resp_stream.push(tokio::spawn( fut.with_context(Context::current_with_span(span)), )); } else { // If we have no request to add, we know that we won't ever // reach quorum: bail out now. break 'request_loop; } } assert!(!resp_stream.is_empty()); // because of loop invariants // Wait for one request to terminate match resp_stream.next().await.unwrap().unwrap() { Ok(msg) => { successes.push(msg); } Err(e) => { errors.push(e); } } } } else { // Case 2: all of the requests need to be sent in all cases, // and need to terminate. (this is the case for writes that // must be spread to n nodes) // Just start all the requests in parallel and return as soon // as the quorum is reached. let mut resp_stream = requests .map(|(_, fut)| fut) .collect::<FuturesUnordered<_>>(); while let Some(resp) = resp_stream.next().await { match resp { Ok(msg) => { successes.push(msg); if successes.len() >= quorum { break; } } Err(e) => { errors.push(e); } } } if !resp_stream.is_empty() { // Continue remaining requests in background. // Continue the remaining requests immediately using tokio::spawn // but enqueue a task in the background runner // to ensure that the process won't exit until the requests are done // (if we had just enqueued the resp_stream.collect directly in the background runner, // the requests might have been put on hold in the background runner's queue, // in which case they might timeout or otherwise fail) let wait_finished_fut = tokio::spawn(async move { resp_stream.collect::<Vec<Result<_, _>>>().await; }); self.0.background.spawn(wait_finished_fut.map(|_| Ok(()))); } } if successes.len() >= quorum { Ok(successes) } else { let errors = errors.iter().map(|e| format!("{}", e)).collect::<Vec<_>>(); Err(Error::Quorum(quorum, successes.len(), to.len(), errors)) } } pub fn request_order(&self, nodes: &[Uuid]) -> Vec<Uuid> { // Retrieve some status variables that we will use to sort requests let peer_list = self.0.fullmesh.get_peer_list(); let ring: Arc<Ring> = self.0.ring.borrow().clone(); let our_zone = match ring.layout.node_role(&self.0.our_node_id) { Some(pc) => &pc.zone, None => "", }; // Augment requests with some information used to sort them. // The tuples are as follows: // (is another node?, is another zone?, latency, node ID, request future) // We store all of these tuples in a vec that we can sort. // By sorting this vec, we priorize ourself, then nodes in the same zone, // and within a same zone we priorize nodes with the lowest latency. let mut nodes = nodes .iter() .map(|to| { let peer_zone = match ring.layout.node_role(to) { Some(pc) => &pc.zone, None => "", }; let peer_avg_ping = peer_list .iter() .find(|x| x.id.as_ref() == to.as_slice()) .and_then(|pi| pi.avg_ping) .unwrap_or_else(|| Duration::from_secs(1)); ( *to != self.0.our_node_id, peer_zone != our_zone, peer_avg_ping, *to, ) }) .collect::<Vec<_>>(); // Sort requests by (priorize ourself, priorize same zone, priorize low latency) nodes.sort_by_key(|(diffnode, diffzone, ping, _to)| (*diffnode, *diffzone, *ping)); nodes .into_iter() .map(|(_, _, _, to)| to) .collect::<Vec<_>>() } }