use std::cmp::Ordering; use std::collections::{HashMap, HashSet}; use serde::{Deserialize, Serialize}; use garage_util::crdt::{AutoCrdt, Crdt, LwwMap}; use garage_util::data::*; use garage_util::error::*; use crate::ring::*; /// The layout of the cluster, i.e. the list of roles /// which are assigned to each cluster node #[derive(Clone, Debug, Serialize, Deserialize)] pub struct ClusterLayout { pub version: u64, pub replication_factor: usize, pub roles: LwwMap<Uuid, NodeRoleV>, /// node_id_vec: a vector of node IDs with a role assigned /// in the system (this includes gateway nodes). /// The order here is different than the vec stored by `roles`, because: /// 1. non-gateway nodes are first so that they have lower numbers /// 2. nodes that don't have a role are excluded (but they need to /// stay in the CRDT as tombstones) pub node_id_vec: Vec<Uuid>, /// the assignation of data partitions to node, the values /// are indices in node_id_vec #[serde(with = "serde_bytes")] pub ring_assignation_data: Vec<CompactNodeType>, /// Role changes which are staged for the next version of the layout pub staging: LwwMap<Uuid, NodeRoleV>, pub staging_hash: Hash, } #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)] pub struct NodeRoleV(pub Option<NodeRole>); impl AutoCrdt for NodeRoleV { const WARN_IF_DIFFERENT: bool = true; } /// The user-assigned roles of cluster nodes #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)] pub struct NodeRole { /// Datacenter at which this entry belong. This information might be used to perform a better /// geodistribution pub zone: String, /// The (relative) capacity of the node /// If this is set to None, the node does not participate in storing data for the system /// and is only active as an API gateway to other nodes pub capacity: Option<u32>, /// A set of tags to recognize the node pub tags: Vec<String>, } impl NodeRole { pub fn capacity_string(&self) -> String { match self.capacity { Some(c) => format!("{}", c), None => "gateway".to_string(), } } } impl ClusterLayout { pub fn new(replication_factor: usize) -> Self { let empty_lwwmap = LwwMap::new(); let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]); ClusterLayout { version: 0, replication_factor, roles: LwwMap::new(), node_id_vec: Vec::new(), ring_assignation_data: Vec::new(), staging: empty_lwwmap, staging_hash: empty_lwwmap_hash, } } pub fn merge(&mut self, other: &ClusterLayout) -> bool { match other.version.cmp(&self.version) { Ordering::Greater => { *self = other.clone(); true } Ordering::Equal => { self.staging.merge(&other.staging); let new_staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); let changed = new_staging_hash != self.staging_hash; self.staging_hash = new_staging_hash; changed } Ordering::Less => false, } } pub fn apply_staged_changes(mut self, version: Option<u64>) -> Result<Self, Error> { match version { None => { let error = r#" Please pass the new layout version number to ensure that you are writing the correct version of the cluster layout. To know the correct value of the new layout version, invoke `garage layout show` and review the proposed changes. "#; return Err(Error::Message(error.into())); } Some(v) => { if v != self.version + 1 { return Err(Error::Message("Invalid new layout version".into())); } } } self.roles.merge(&self.staging); self.roles.retain(|(_, _, v)| v.0.is_some()); if !self.calculate_partition_assignation() { return Err(Error::Message("Could not calculate new assignation of partitions to nodes. This can happen if there are less nodes than the desired number of copies of your data (see the replication_mode configuration parameter).".into())); } self.staging.clear(); self.staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); self.version += 1; Ok(self) } pub fn revert_staged_changes(mut self, version: Option<u64>) -> Result<Self, Error> { match version { None => { let error = r#" Please pass the new layout version number to ensure that you are writing the correct version of the cluster layout. To know the correct value of the new layout version, invoke `garage layout show` and review the proposed changes. "#; return Err(Error::Message(error.into())); } Some(v) => { if v != self.version + 1 { return Err(Error::Message("Invalid new layout version".into())); } } } self.staging.clear(); self.staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); self.version += 1; Ok(self) } /// Returns a list of IDs of nodes that currently have /// a role in the cluster pub fn node_ids(&self) -> &[Uuid] { &self.node_id_vec[..] } pub fn num_nodes(&self) -> usize { self.node_id_vec.len() } /// Returns the role of a node in the layout pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> { match self.roles.get(node) { Some(NodeRoleV(Some(v))) => Some(v), _ => None, } } /// Check a cluster layout for internal consistency /// returns true if consistent, false if error pub fn check(&self) -> bool { // Check that the hash of the staging data is correct let staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]); if staging_hash != self.staging_hash { return false; } // Check that node_id_vec contains the correct list of nodes let mut expected_nodes = self .roles .items() .iter() .filter(|(_, _, v)| v.0.is_some()) .map(|(id, _, _)| *id) .collect::<Vec<_>>(); expected_nodes.sort(); let mut node_id_vec = self.node_id_vec.clone(); node_id_vec.sort(); if expected_nodes != node_id_vec { return false; } // Check that the assignation data has the correct length if self.ring_assignation_data.len() != (1 << PARTITION_BITS) * self.replication_factor { return false; } // Check that the assigned nodes are correct identifiers // of nodes that are assigned a role // and that role is not the role of a gateway nodes for x in self.ring_assignation_data.iter() { if *x as usize >= self.node_id_vec.len() { return false; } let node = self.node_id_vec[*x as usize]; match self.roles.get(&node) { Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (), _ => return false, } } true } /// Calculate an assignation of partitions to nodes pub fn calculate_partition_assignation(&mut self) -> bool { let (configured_nodes, zones) = self.configured_nodes_and_zones(); let n_zones = zones.len(); println!("Calculating updated partition assignation, this may take some time..."); println!(); // Get old partition assignation let old_partitions = self.parse_assignation_data(); // Start new partition assignation with nodes from old assignation where it is relevant let mut partitions = old_partitions .iter() .map(|old_part| { let mut new_part = PartitionAss::new(); for node in old_part.nodes.iter() { if let Some(role) = node.1 { if role.capacity.is_some() { new_part.add(None, n_zones, node.0, role); } } } new_part }) .collect::<Vec<_>>(); // In various cases, not enough nodes will have been added for all partitions // in the step above (e.g. due to node removals, or new zones being added). // Here we add more nodes to make a complete (but sub-optimal) assignation, // using an initial partition assignation that is calculated using the multi-dc maglev trick match self.initial_partition_assignation() { Some(initial_partitions) => { for (part, ipart) in partitions.iter_mut().zip(initial_partitions.iter()) { for (id, info) in ipart.nodes.iter() { if part.nodes.len() < self.replication_factor { part.add(None, n_zones, id, info.unwrap()); } } assert!(part.nodes.len() == self.replication_factor); } } None => { // Not enough nodes in cluster to build a correct assignation. // Signal it by returning an error. return false; } } // Calculate how many partitions each node should ideally store, // and how many partitions they are storing with the current assignation // This defines our target for which we will optimize in the following loop. let total_capacity = configured_nodes .iter() .map(|(_, info)| info.capacity.unwrap_or(0)) .sum::<u32>() as usize; let total_partitions = self.replication_factor * (1 << PARTITION_BITS); let target_partitions_per_node = configured_nodes .iter() .map(|(id, info)| { ( *id, info.capacity.unwrap_or(0) as usize * total_partitions / total_capacity, ) }) .collect::<HashMap<&Uuid, usize>>(); let mut partitions_per_node = self.partitions_per_node(&partitions[..]); println!("Target number of partitions per node:"); for (node, npart) in target_partitions_per_node.iter() { println!("{:?}\t{}", node, npart); } println!(); // Shuffle partitions between nodes so that nodes will reach (or better approach) // their target number of stored partitions loop { let mut option = None; for (i, part) in partitions.iter_mut().enumerate() { for (irm, (idrm, _)) in part.nodes.iter().enumerate() { let errratio = |node, parts| { let tgt = *target_partitions_per_node.get(node).unwrap() as f32; (parts - tgt) / tgt }; let square = |x| x * x; let partsrm = partitions_per_node.get(*idrm).cloned().unwrap_or(0) as f32; for (idadd, infoadd) in configured_nodes.iter() { // skip replacing a node by itself // and skip replacing by gateway nodes if idadd == idrm || infoadd.capacity.is_none() { continue; } // We want to try replacing node idrm by node idadd // if that brings us close to our goal. let partsadd = partitions_per_node.get(*idadd).cloned().unwrap_or(0) as f32; let oldcost = square(errratio(*idrm, partsrm) - errratio(*idadd, partsadd)); let newcost = square(errratio(*idrm, partsrm - 1.) - errratio(*idadd, partsadd + 1.)); if newcost >= oldcost { // not closer to our goal continue; } let gain = oldcost - newcost; let mut newpart = part.clone(); newpart.nodes.remove(irm); if !newpart.add(None, n_zones, idadd, infoadd) { continue; } assert!(newpart.nodes.len() == self.replication_factor); if !old_partitions[i] .is_valid_transition_to(&newpart, self.replication_factor) { continue; } if option .as_ref() .map(|(old_gain, _, _, _, _)| gain > *old_gain) .unwrap_or(true) { option = Some((gain, i, idadd, idrm, newpart)); } } } } if let Some((_gain, i, idadd, idrm, newpart)) = option { *partitions_per_node.entry(idadd).or_insert(0) += 1; *partitions_per_node.get_mut(idrm).unwrap() -= 1; partitions[i] = newpart; } else { break; } } // Check we completed the assignation correctly // (this is a set of checks for the algorithm's consistency) assert!(partitions.len() == (1 << PARTITION_BITS)); assert!(partitions .iter() .all(|p| p.nodes.len() == self.replication_factor)); let new_partitions_per_node = self.partitions_per_node(&partitions[..]); assert!(new_partitions_per_node == partitions_per_node); // Show statistics println!("New number of partitions per node:"); for (node, npart) in partitions_per_node.iter() { let tgt = *target_partitions_per_node.get(node).unwrap(); let pct = 100f32 * (*npart as f32) / (tgt as f32); println!("{:?}\t{}\t({}% of {})", node, npart, pct as i32, tgt); } println!(); let mut diffcount = HashMap::new(); for (oldpart, newpart) in old_partitions.iter().zip(partitions.iter()) { let nminus = oldpart.txtplus(newpart); let nplus = newpart.txtplus(oldpart); if nminus != "[...]" || nplus != "[...]" { let tup = (nminus, nplus); *diffcount.entry(tup).or_insert(0) += 1; } } if diffcount.is_empty() { println!("No data will be moved between nodes."); } else { let mut diffcount = diffcount.into_iter().collect::<Vec<_>>(); diffcount.sort(); println!("Number of partitions that move:"); for ((nminus, nplus), npart) in diffcount { println!("\t{}\t{} -> {}", npart, nminus, nplus); } } println!(); // Calculate and save new assignation data let (nodes, assignation_data) = self.compute_assignation_data(&configured_nodes[..], &partitions[..]); self.node_id_vec = nodes; self.ring_assignation_data = assignation_data; true } fn initial_partition_assignation(&self) -> Option<Vec<PartitionAss<'_>>> { let (configured_nodes, zones) = self.configured_nodes_and_zones(); let n_zones = zones.len(); // Create a vector of partition indices (0 to 2**PARTITION_BITS-1) let partitions_idx = (0usize..(1usize << PARTITION_BITS)).collect::<Vec<_>>(); // Prepare ring let mut partitions: Vec<PartitionAss> = partitions_idx .iter() .map(|_i| PartitionAss::new()) .collect::<Vec<_>>(); // Create MagLev priority queues for each node let mut queues = configured_nodes .iter() .filter(|(_id, info)| info.capacity.is_some()) .map(|(node_id, node_info)| { let mut parts = partitions_idx .iter() .map(|i| { let part_data = [&u16::to_be_bytes(*i as u16)[..], node_id.as_slice()].concat(); (*i, fasthash(&part_data[..])) }) .collect::<Vec<_>>(); parts.sort_by_key(|(_i, h)| *h); let parts_i = parts.iter().map(|(i, _h)| *i).collect::<Vec<_>>(); (node_id, node_info, parts_i, 0) }) .collect::<Vec<_>>(); let max_capacity = configured_nodes .iter() .filter_map(|(_, node_info)| node_info.capacity) .fold(0, std::cmp::max); // Fill up ring for rep in 0..self.replication_factor { queues.sort_by_key(|(ni, _np, _q, _p)| { let queue_data = [&u16::to_be_bytes(rep as u16)[..], ni.as_slice()].concat(); fasthash(&queue_data[..]) }); for (_, _, _, pos) in queues.iter_mut() { *pos = 0; } let mut remaining = partitions_idx.len(); while remaining > 0 { let remaining0 = remaining; for i_round in 0..max_capacity { for (node_id, node_info, q, pos) in queues.iter_mut() { if i_round >= node_info.capacity.unwrap() { continue; } for (pos2, &qv) in q.iter().enumerate().skip(*pos) { if partitions[qv].add(Some(rep + 1), n_zones, node_id, node_info) { remaining -= 1; *pos = pos2 + 1; break; } } } } if remaining == remaining0 { // No progress made, exit return None; } } } Some(partitions) } fn configured_nodes_and_zones(&self) -> (Vec<(&Uuid, &NodeRole)>, HashSet<&str>) { let configured_nodes = self .roles .items() .iter() .filter(|(_id, _, info)| info.0.is_some()) .map(|(id, _, info)| (id, info.0.as_ref().unwrap())) .collect::<Vec<(&Uuid, &NodeRole)>>(); let zones = configured_nodes .iter() .filter(|(_id, info)| info.capacity.is_some()) .map(|(_id, info)| info.zone.as_str()) .collect::<HashSet<&str>>(); (configured_nodes, zones) } fn compute_assignation_data<'a>( &self, configured_nodes: &[(&'a Uuid, &'a NodeRole)], partitions: &[PartitionAss<'a>], ) -> (Vec<Uuid>, Vec<CompactNodeType>) { assert!(partitions.len() == (1 << PARTITION_BITS)); // Make a canonical order for nodes let mut nodes = configured_nodes .iter() .filter(|(_id, info)| info.capacity.is_some()) .map(|(id, _)| **id) .collect::<Vec<_>>(); let nodes_rev = nodes .iter() .enumerate() .map(|(i, id)| (*id, i as CompactNodeType)) .collect::<HashMap<Uuid, CompactNodeType>>(); let mut assignation_data = vec![]; for partition in partitions.iter() { assert!(partition.nodes.len() == self.replication_factor); for (id, _) in partition.nodes.iter() { assignation_data.push(*nodes_rev.get(id).unwrap()); } } nodes.extend( configured_nodes .iter() .filter(|(_id, info)| info.capacity.is_none()) .map(|(id, _)| **id), ); (nodes, assignation_data) } fn parse_assignation_data(&self) -> Vec<PartitionAss<'_>> { if self.ring_assignation_data.len() == self.replication_factor * (1 << PARTITION_BITS) { // If the previous assignation data is correct, use that let mut partitions = vec![]; for i in 0..(1 << PARTITION_BITS) { let mut part = PartitionAss::new(); for node_i in self.ring_assignation_data [i * self.replication_factor..(i + 1) * self.replication_factor] .iter() { let node_id = &self.node_id_vec[*node_i as usize]; if let Some(NodeRoleV(Some(info))) = self.roles.get(node_id) { part.nodes.push((node_id, Some(info))); } else { part.nodes.push((node_id, None)); } } partitions.push(part); } partitions } else { // Otherwise start fresh (0..(1 << PARTITION_BITS)) .map(|_| PartitionAss::new()) .collect() } } fn partitions_per_node<'a>(&self, partitions: &[PartitionAss<'a>]) -> HashMap<&'a Uuid, usize> { let mut partitions_per_node = HashMap::<&Uuid, usize>::new(); for p in partitions.iter() { for (id, _) in p.nodes.iter() { *partitions_per_node.entry(*id).or_insert(0) += 1; } } partitions_per_node } } // ---- Internal structs for partition assignation in layout ---- #[derive(Clone)] struct PartitionAss<'a> { nodes: Vec<(&'a Uuid, Option<&'a NodeRole>)>, } impl<'a> PartitionAss<'a> { fn new() -> Self { Self { nodes: Vec::new() } } fn nplus(&self, other: &PartitionAss<'a>) -> usize { self.nodes .iter() .filter(|x| !other.nodes.contains(x)) .count() } fn txtplus(&self, other: &PartitionAss<'a>) -> String { let mut nodes = self .nodes .iter() .filter(|x| !other.nodes.contains(x)) .map(|x| format!("{:?}", x.0)) .collect::<Vec<_>>(); nodes.sort(); if self.nodes.iter().any(|x| other.nodes.contains(x)) { nodes.push("...".into()); } format!("[{}]", nodes.join(" ")) } fn is_valid_transition_to(&self, other: &PartitionAss<'a>, replication_factor: usize) -> bool { let min_keep_nodes_per_part = (replication_factor + 1) / 2; let n_removed = self.nplus(other); if self.nodes.len() <= min_keep_nodes_per_part { n_removed == 0 } else { n_removed <= self.nodes.len() - min_keep_nodes_per_part } } // add is a key function in creating a PartitionAss, i.e. the list of nodes // to which a partition is assigned. It tries to add a certain node id to the // assignation, but checks that doing so is compatible with the NECESSARY // condition that the partition assignation must be dispersed over different // zones (datacenters) if enough zones exist. This is why it takes a n_zones // parameter, which is the total number of zones that have existing nodes: // if nodes in the assignation already cover all n_zones zones, then any node // that is not yet in the assignation can be added. Otherwise, only nodes // that are in a new zone can be added. fn add( &mut self, target_len: Option<usize>, n_zones: usize, node: &'a Uuid, role: &'a NodeRole, ) -> bool { if let Some(tl) = target_len { if self.nodes.len() != tl - 1 { return false; } } let p_zns = self .nodes .iter() .map(|(_id, info)| info.unwrap().zone.as_str()) .collect::<HashSet<&str>>(); if (p_zns.len() < n_zones && !p_zns.contains(&role.zone.as_str())) || (p_zns.len() == n_zones && !self.nodes.iter().any(|(id, _)| *id == node)) { self.nodes.push((node, Some(role))); true } else { false } } }