use std::path::{Path, PathBuf}; use std::sync::Arc; use std::time::Duration; use arc_swap::ArcSwapOption; use async_trait::async_trait; use futures::future::*; use futures::select; use serde::{Deserialize, Serialize}; use tokio::fs; use tokio::io::{AsyncReadExt, AsyncWriteExt}; use tokio::sync::{watch, Mutex, Notify}; use garage_util::data::*; use garage_util::error::*; use garage_util::time::*; use garage_util::tranquilizer::Tranquilizer; use garage_rpc::system::System; use garage_rpc::*; use garage_table::replication::{TableReplication, TableShardedReplication}; use crate::block_ref_table::*; use crate::garage::Garage; /// Size under which data will be stored inlined in database instead of as files pub const INLINE_THRESHOLD: usize = 3072; pub const BACKGROUND_WORKERS: u64 = 1; pub const BACKGROUND_TRANQUILITY: u32 = 3; // Timeout for RPCs that read and write blocks to remote nodes const BLOCK_RW_TIMEOUT: Duration = Duration::from_secs(30); // Timeout for RPCs that ask other nodes whether they need a copy // of a given block before we delete it locally const NEED_BLOCK_QUERY_TIMEOUT: Duration = Duration::from_secs(5); // The delay between the time where a resync operation fails // and the time when it is retried. const RESYNC_RETRY_DELAY: Duration = Duration::from_secs(60); // The delay between the moment when the reference counter // drops to zero, and the moment where we allow ourselves // to delete the block locally. const BLOCK_GC_DELAY: Duration = Duration::from_secs(600); /// RPC messages used to share blocks of data between nodes #[derive(Debug, Serialize, Deserialize)] pub enum BlockRpc { Ok, /// Message to ask for a block of data, by hash GetBlock(Hash), /// Message to send a block of data, either because requested, of for first delivery of new /// block PutBlock(PutBlockMessage), /// Ask other node if they should have this block, but don't actually have it NeedBlockQuery(Hash), /// Response : whether the node do require that block NeedBlockReply(bool), } /// Structure used to send a block #[derive(Debug, Serialize, Deserialize)] pub struct PutBlockMessage { /// Hash of the block pub hash: Hash, /// Content of the block #[serde(with = "serde_bytes")] pub data: Vec, } impl Rpc for BlockRpc { type Response = Result; } /// The block manager, handling block exchange between nodes, and block storage on local node pub struct BlockManager { /// Replication strategy, allowing to find on which node blocks should be located pub replication: TableShardedReplication, /// Directory in which block are stored pub data_dir: PathBuf, mutation_lock: Mutex, rc: sled::Tree, resync_queue: sled::Tree, resync_notify: Notify, system: Arc, endpoint: Arc>, pub(crate) garage: ArcSwapOption, } // This custom struct contains functions that must only be ran // when the lock is held. We ensure that it is the case by storing // it INSIDE a Mutex. struct BlockManagerLocked(); impl BlockManager { pub fn new( db: &sled::Db, data_dir: PathBuf, replication: TableShardedReplication, system: Arc, ) -> Arc { let rc = db .open_tree("block_local_rc") .expect("Unable to open block_local_rc tree"); let resync_queue = db .open_tree("block_local_resync_queue") .expect("Unable to open block_local_resync_queue tree"); let endpoint = system .netapp .endpoint("garage_model/block.rs/Rpc".to_string()); let manager_locked = BlockManagerLocked(); let block_manager = Arc::new(Self { replication, data_dir, mutation_lock: Mutex::new(manager_locked), rc, resync_queue, resync_notify: Notify::new(), system, endpoint, garage: ArcSwapOption::from(None), }); block_manager.endpoint.set_handler(block_manager.clone()); block_manager } // ---- Public interface ---- /// Ask nodes that might have a block for it pub async fn rpc_get_block(&self, hash: &Hash) -> Result, Error> { let who = self.replication.read_nodes(hash); let resps = self .system .rpc .try_call_many( &self.endpoint, &who[..], BlockRpc::GetBlock(*hash), RequestStrategy::with_priority(PRIO_NORMAL) .with_quorum(1) .with_timeout(BLOCK_RW_TIMEOUT) .interrupt_after_quorum(true), ) .await?; for resp in resps { if let BlockRpc::PutBlock(msg) = resp { return Ok(msg.data); } } Err(Error::Message(format!( "Unable to read block {:?}: no valid blocks returned", hash ))) } /// Send block to nodes that should have it pub async fn rpc_put_block(&self, hash: Hash, data: Vec) -> Result<(), Error> { let who = self.replication.write_nodes(&hash); self.system .rpc .try_call_many( &self.endpoint, &who[..], BlockRpc::PutBlock(PutBlockMessage { hash, data }), RequestStrategy::with_priority(PRIO_NORMAL) .with_quorum(self.replication.write_quorum()) .with_timeout(BLOCK_RW_TIMEOUT), ) .await?; Ok(()) } /// Launch the repair procedure on the data store /// /// This will list all blocks locally present, as well as those /// that are required because of refcount > 0, and will try /// to fix any mismatch between the two. pub async fn repair_data_store(&self, must_exit: &watch::Receiver) -> Result<(), Error> { // 1. Repair blocks from RC table. let garage = self.garage.load_full().unwrap(); let mut last_hash = None; for (i, entry) in garage.block_ref_table.data.store.iter().enumerate() { let (_k, v_bytes) = entry?; let block_ref = rmp_serde::decode::from_read_ref::<_, BlockRef>(v_bytes.as_ref())?; if Some(&block_ref.block) == last_hash.as_ref() { continue; } if !block_ref.deleted.get() { last_hash = Some(block_ref.block); self.put_to_resync(&block_ref.block, Duration::from_secs(0))?; } if i & 0xFF == 0 && *must_exit.borrow() { return Ok(()); } } // 2. Repair blocks actually on disk // Lists all blocks on disk and adds them to the resync queue. // This allows us to find blocks we are storing but don't actually need, // so that we can offload them if necessary and then delete them locally. self.for_each_file( (), move |_, hash| async move { self.put_to_resync(&hash, Duration::from_secs(0)) }, must_exit, ) .await } /// Verify integrity of each block on disk. Use `speed_limit` to limit the load generated by /// this function. pub async fn scrub_data_store( &self, must_exit: &watch::Receiver, tranquility: u32, ) -> Result<(), Error> { let tranquilizer = Tranquilizer::new(30); self.for_each_file( tranquilizer, move |mut tranquilizer, hash| async move { let _ = self.read_block(&hash).await; tranquilizer.tranquilize(tranquility).await; Ok(tranquilizer) }, must_exit, ) .await } /// Get lenght of resync queue pub fn resync_queue_len(&self) -> usize { self.resync_queue.len() } /// Get number of items in the refcount table pub fn rc_len(&self) -> usize { self.rc.len() } //// ----- Managing the reference counter ---- /// Increment the number of time a block is used, putting it to resynchronization if it is /// required, but not known pub fn block_incref(&self, hash: &Hash) -> Result<(), Error> { let old_rc = self .rc .fetch_and_update(&hash, |old| RcEntry::parse_opt(old).increment().serialize())?; let old_rc = RcEntry::parse_opt(old_rc); if old_rc.is_zero() { // When the reference counter is incremented, there is // normally a node that is responsible for sending us the // data of the block. However that operation may fail, // so in all cases we add the block here to the todo list // to check later that it arrived correctly, and if not // we will fecth it from someone. self.put_to_resync(hash, 2 * BLOCK_RW_TIMEOUT)?; } Ok(()) } /// Decrement the number of time a block is used pub fn block_decref(&self, hash: &Hash) -> Result<(), Error> { let new_rc = self .rc .update_and_fetch(&hash, |old| RcEntry::parse_opt(old).decrement().serialize())?; let new_rc = RcEntry::parse_opt(new_rc); if let RcEntry::Deletable { .. } = new_rc { self.put_to_resync(hash, BLOCK_GC_DELAY + Duration::from_secs(10))?; } Ok(()) } /// Read a block's reference count fn get_block_rc(&self, hash: &Hash) -> Result { Ok(RcEntry::parse_opt(self.rc.get(hash.as_ref())?)) } /// Delete an entry in the RC table if it is deletable and the /// deletion time has passed fn clear_deleted_block_rc(&self, hash: &Hash) -> Result<(), Error> { let now = now_msec(); self.rc.update_and_fetch(&hash, |rcval| { let updated = match RcEntry::parse_opt(rcval) { RcEntry::Deletable { at_time } if now > at_time => RcEntry::Absent, v => v, }; updated.serialize() })?; Ok(()) } // ---- Reading and writing blocks locally ---- /// Write a block to disk async fn write_block(&self, hash: &Hash, data: &[u8]) -> Result { self.mutation_lock .lock() .await .write_block(hash, data, self) .await } /// Read block from disk, verifying it's integrity async fn read_block(&self, hash: &Hash) -> Result { let path = self.block_path(hash); let mut f = match fs::File::open(&path).await { Ok(f) => f, Err(e) => { // Not found but maybe we should have had it ?? self.put_to_resync(hash, 2 * BLOCK_RW_TIMEOUT)?; return Err(Into::into(e)); } }; let mut data = vec![]; f.read_to_end(&mut data).await?; drop(f); if blake2sum(&data[..]) != *hash { self.mutation_lock .lock() .await .move_block_to_corrupted(hash, self) .await?; self.put_to_resync(hash, Duration::from_millis(0))?; return Err(Error::CorruptData(*hash)); } Ok(BlockRpc::PutBlock(PutBlockMessage { hash: *hash, data })) } /// Check if this node should have a block, but don't actually have it async fn need_block(&self, hash: &Hash) -> Result { let BlockStatus { exists, needed } = self .mutation_lock .lock() .await .check_block_status(hash, self) .await?; Ok(needed.is_nonzero() && !exists) } /// Utility: gives the path of the directory in which a block should be found fn block_dir(&self, hash: &Hash) -> PathBuf { let mut path = self.data_dir.clone(); path.push(hex::encode(&hash.as_slice()[0..1])); path.push(hex::encode(&hash.as_slice()[1..2])); path } /// Utility: give the full path where a block should be found fn block_path(&self, hash: &Hash) -> PathBuf { let mut path = self.block_dir(hash); path.push(hex::encode(hash.as_ref())); path } // ---- Resync loop ---- pub fn spawn_background_worker(self: Arc) { // Launch n simultaneous workers for background resync loop preprocessing for i in 0..BACKGROUND_WORKERS { let bm2 = self.clone(); let background = self.system.background.clone(); tokio::spawn(async move { tokio::time::sleep(Duration::from_secs(10 * (i + 1))).await; background.spawn_worker(format!("block resync worker {}", i), move |must_exit| { bm2.resync_loop(must_exit) }); }); } } fn put_to_resync(&self, hash: &Hash, delay: Duration) -> Result<(), Error> { let when = now_msec() + delay.as_millis() as u64; trace!("Put resync_queue: {} {:?}", when, hash); let mut key = u64::to_be_bytes(when).to_vec(); key.extend(hash.as_ref()); self.resync_queue.insert(key, hash.as_ref())?; self.resync_notify.notify_waiters(); Ok(()) } async fn resync_loop(self: Arc, mut must_exit: watch::Receiver) { let mut tranquilizer = Tranquilizer::new(30); while !*must_exit.borrow() { match self.resync_iter(&mut must_exit).await { Ok(true) => { tranquilizer.tranquilize(BACKGROUND_TRANQUILITY).await; } Ok(false) => { tranquilizer.reset(); } Err(e) => { // The errors that we have here are only Sled errors // We don't really know how to handle them so just ¯\_(ツ)_/¯ // (there is kind of an assumption that Sled won't error on us, // if it does there is not much we can do -- TODO should we just panic?) error!( "Could not do a resync iteration: {} (this is a very bad error)", e ); tranquilizer.reset(); } } } } async fn resync_iter(&self, must_exit: &mut watch::Receiver) -> Result { if let Some((time_bytes, hash_bytes)) = self.resync_queue.pop_min()? { let time_msec = u64_from_be_bytes(&time_bytes[0..8]); let now = now_msec(); if now >= time_msec { let hash = Hash::try_from(&hash_bytes[..]).unwrap(); let res = self.resync_block(&hash).await; if let Err(e) = &res { warn!("Error when resyncing {:?}: {}", hash, e); self.put_to_resync(&hash, RESYNC_RETRY_DELAY)?; } Ok(true) } else { self.resync_queue.insert(time_bytes, hash_bytes)?; let delay = tokio::time::sleep(Duration::from_millis(time_msec - now)); select! { _ = delay.fuse() => {}, _ = self.resync_notify.notified().fuse() => {}, _ = must_exit.changed().fuse() => {}, } Ok(false) } } else { select! { _ = self.resync_notify.notified().fuse() => {}, _ = must_exit.changed().fuse() => {}, } Ok(false) } } async fn resync_block(&self, hash: &Hash) -> Result<(), Error> { let BlockStatus { exists, needed } = self .mutation_lock .lock() .await .check_block_status(hash, self) .await?; if exists != needed.is_needed() || exists != needed.is_nonzero() { debug!( "Resync block {:?}: exists {}, nonzero rc {}, deletable {}", hash, exists, needed.is_nonzero(), needed.is_deletable(), ); } if exists && needed.is_deletable() { info!("Resync block {:?}: offloading and deleting", hash); let mut who = self.replication.write_nodes(hash); if who.len() < self.replication.write_quorum() { return Err(Error::Message("Not trying to offload block because we don't have a quorum of nodes to write to".to_string())); } who.retain(|id| *id != self.system.id); let msg = Arc::new(BlockRpc::NeedBlockQuery(*hash)); let who_needs_fut = who.iter().map(|to| { self.system.rpc.call_arc( &self.endpoint, *to, msg.clone(), RequestStrategy::with_priority(PRIO_BACKGROUND) .with_timeout(NEED_BLOCK_QUERY_TIMEOUT), ) }); let who_needs_resps = join_all(who_needs_fut).await; let mut need_nodes = vec![]; for (node, needed) in who.iter().zip(who_needs_resps.into_iter()) { match needed.err_context("NeedBlockQuery RPC")? { BlockRpc::NeedBlockReply(needed) => { if needed { need_nodes.push(*node); } } _ => { return Err(Error::Message( "Unexpected response to NeedBlockQuery RPC".to_string(), )); } } } if !need_nodes.is_empty() { trace!( "Block {:?} needed by {} nodes, sending", hash, need_nodes.len() ); let put_block_message = self.read_block(hash).await?; self.system .rpc .try_call_many( &self.endpoint, &need_nodes[..], put_block_message, RequestStrategy::with_priority(PRIO_BACKGROUND) .with_quorum(need_nodes.len()) .with_timeout(BLOCK_RW_TIMEOUT), ) .await .err_context("PutBlock RPC")?; } info!( "Deleting unneeded block {:?}, offload finished ({} / {})", hash, need_nodes.len(), who.len() ); self.mutation_lock .lock() .await .delete_if_unneeded(hash, self) .await?; self.clear_deleted_block_rc(hash)?; } if needed.is_nonzero() && !exists { info!( "Resync block {:?}: fetching absent but needed block (refcount > 0)", hash ); let block_data = self.rpc_get_block(hash).await?; self.write_block(hash, &block_data[..]).await?; } Ok(()) } // ---- Utility: iteration on files in the data directory ---- async fn for_each_file( &self, state: State, mut f: F, must_exit: &watch::Receiver, ) -> Result<(), Error> where F: FnMut(State, Hash) -> Fut + Send, Fut: Future> + Send, State: Send, { self.for_each_file_rec(&self.data_dir, state, &mut f, must_exit) .await .map(|_| ()) } fn for_each_file_rec<'a, F, Fut, State>( &'a self, path: &'a Path, mut state: State, f: &'a mut F, must_exit: &'a watch::Receiver, ) -> BoxFuture<'a, Result> where F: FnMut(State, Hash) -> Fut + Send, Fut: Future> + Send, State: Send + 'a, { async move { let mut ls_data_dir = fs::read_dir(path).await?; while let Some(data_dir_ent) = ls_data_dir.next_entry().await? { if *must_exit.borrow() { break; } let name = data_dir_ent.file_name(); let name = if let Ok(n) = name.into_string() { n } else { continue; }; let ent_type = data_dir_ent.file_type().await?; if name.len() == 2 && hex::decode(&name).is_ok() && ent_type.is_dir() { state = self .for_each_file_rec(&data_dir_ent.path(), state, f, must_exit) .await?; } else if name.len() == 64 { let hash_bytes = if let Ok(h) = hex::decode(&name) { h } else { continue; }; let mut hash = [0u8; 32]; hash.copy_from_slice(&hash_bytes[..]); state = f(state, hash.into()).await?; } } Ok(state) } .boxed() } } #[async_trait] impl EndpointHandler for BlockManager { async fn handle( self: &Arc, message: &BlockRpc, _from: NodeID, ) -> Result { match message { BlockRpc::PutBlock(m) => self.write_block(&m.hash, &m.data).await, BlockRpc::GetBlock(h) => self.read_block(h).await, BlockRpc::NeedBlockQuery(h) => self.need_block(h).await.map(BlockRpc::NeedBlockReply), _ => Err(Error::BadRpc("Unexpected RPC message".to_string())), } } } struct BlockStatus { exists: bool, needed: RcEntry, } impl BlockManagerLocked { async fn check_block_status( &self, hash: &Hash, mgr: &BlockManager, ) -> Result { let path = mgr.block_path(hash); let exists = fs::metadata(&path).await.is_ok(); let needed = mgr.get_block_rc(hash)?; Ok(BlockStatus { exists, needed }) } async fn write_block( &self, hash: &Hash, data: &[u8], mgr: &BlockManager, ) -> Result { let mut path = mgr.block_dir(hash); fs::create_dir_all(&path).await?; path.push(hex::encode(hash)); if fs::metadata(&path).await.is_ok() { return Ok(BlockRpc::Ok); } let mut path2 = path.clone(); path2.set_extension("tmp"); let mut f = fs::File::create(&path2).await?; f.write_all(data).await?; drop(f); fs::rename(path2, path).await?; Ok(BlockRpc::Ok) } async fn move_block_to_corrupted(&self, hash: &Hash, mgr: &BlockManager) -> Result<(), Error> { warn!( "Block {:?} is corrupted. Renaming to .corrupted and resyncing.", hash ); let path = mgr.block_path(hash); let mut path2 = path.clone(); path2.set_extension("corrupted"); fs::rename(path, path2).await?; Ok(()) } async fn delete_if_unneeded(&self, hash: &Hash, mgr: &BlockManager) -> Result<(), Error> { let BlockStatus { exists, needed } = self.check_block_status(hash, mgr).await?; if exists && needed.is_deletable() { let path = mgr.block_path(hash); fs::remove_file(path).await?; } Ok(()) } } fn u64_from_be_bytes>(bytes: T) -> u64 { assert!(bytes.as_ref().len() == 8); let mut x8 = [0u8; 8]; x8.copy_from_slice(bytes.as_ref()); u64::from_be_bytes(x8) } /// Describes the state of the reference counter for a block #[derive(Clone, Copy, Debug)] enum RcEntry { /// Present: the block has `count` references, with `count` > 0. /// /// This is stored as u64::to_be_bytes(count) Present { count: u64 }, /// Deletable: the block has zero references, and can be deleted /// once time (returned by now_msec) is larger than at_time /// (in millis since Unix epoch) /// /// This is stored as [0u8; 8] followed by u64::to_be_bytes(at_time), /// (this allows for the data format to be backwards compatible with /// previous Garage versions that didn't have this intermediate state) Deletable { at_time: u64 }, /// Absent: the block has zero references, and can be deleted /// immediately Absent, } impl RcEntry { fn parse(bytes: &[u8]) -> Self { if bytes.len() == 8 { RcEntry::Present { count: u64::from_be_bytes(bytes.try_into().unwrap()), } } else if bytes.len() == 16 { RcEntry::Deletable { at_time: u64::from_be_bytes(bytes[8..16].try_into().unwrap()), } } else { panic!("Invalid RC entry: {:?}, database is corrupted. This is an error Garage is currently unable to recover from. Sorry, and also please report a bug.", bytes ) } } fn parse_opt>(bytes: Option) -> Self { bytes .map(|b| Self::parse(b.as_ref())) .unwrap_or(Self::Absent) } fn serialize(self) -> Option> { match self { RcEntry::Present { count } => Some(u64::to_be_bytes(count).to_vec()), RcEntry::Deletable { at_time } => { Some([u64::to_be_bytes(0), u64::to_be_bytes(at_time)].concat()) } RcEntry::Absent => None, } } fn increment(self) -> Self { let old_count = match self { RcEntry::Present { count } => count, _ => 0, }; RcEntry::Present { count: old_count + 1, } } fn decrement(self) -> Self { match self { RcEntry::Present { count } => { if count > 1 { RcEntry::Present { count: count - 1 } } else { RcEntry::Deletable { at_time: now_msec() + BLOCK_GC_DELAY.as_millis() as u64, } } } del => del, } } fn is_zero(&self) -> bool { matches!(self, RcEntry::Deletable { .. } | RcEntry::Absent) } fn is_nonzero(&self) -> bool { !self.is_zero() } fn is_deletable(&self) -> bool { match self { RcEntry::Present { .. } => false, RcEntry::Deletable { at_time } => now_msec() > *at_time, RcEntry::Absent => true, } } fn is_needed(&self) -> bool { !self.is_deletable() } }