diff options
Diffstat (limited to 'src/util')
-rw-r--r-- | src/util/bipartite.rs | 363 | ||||
-rw-r--r-- | src/util/lib.rs | 1 |
2 files changed, 0 insertions, 364 deletions
diff --git a/src/util/bipartite.rs b/src/util/bipartite.rs deleted file mode 100644 index 1e1e9caa..00000000 --- a/src/util/bipartite.rs +++ /dev/null @@ -1,363 +0,0 @@ -/* - * This module deals with graph algorithm in complete bipartite - * graphs. It is used in layout.rs to build the partition to node - * assignation. - * */ - -use rand::prelude::SliceRandom; -use std::cmp::{max, min}; -use std::collections::VecDeque; - -//Graph data structure for the flow algorithm. -#[derive(Clone, Copy, Debug)] -struct EdgeFlow { - c: i32, - flow: i32, - v: usize, - rev: usize, -} - -//Graph data structure for the detection of positive cycles. -#[derive(Clone, Copy, Debug)] -struct WeightedEdge { - w: i32, - u: usize, - v: usize, -} - -/* This function takes two matchings (old_match and new_match) in a - * complete bipartite graph. It returns a matching that has the - * same degree as new_match at every vertex, and that is as close - * as possible to old_match. - * */ -pub fn optimize_matching( - old_match: &[Vec<usize>], - new_match: &[Vec<usize>], - nb_right: usize, -) -> Vec<Vec<usize>> { - let nb_left = old_match.len(); - let ed = WeightedEdge { w: -1, u: 0, v: 0 }; - let mut edge_vec = vec![ed; nb_left * nb_right]; - - //We build the complete bipartite graph structure, represented - //by the list of all edges. - for i in 0..nb_left { - for j in 0..nb_right { - edge_vec[i * nb_right + j].u = i; - edge_vec[i * nb_right + j].v = nb_left + j; - } - } - - for i in 0..edge_vec.len() { - //We add the old matchings - if old_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) { - edge_vec[i].w *= -1; - } - //We add the new matchings - if new_match[edge_vec[i].u].contains(&(edge_vec[i].v - nb_left)) { - (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u); - edge_vec[i].w *= -1; - } - } - //Now edge_vec is a graph where edges are oriented LR if we - //can add them to new_match, and RL otherwise. If - //adding/removing them makes the matching closer to old_match - //they have weight 1; and -1 otherwise. - - //We shuffle the edge list so that there is no bias depending in - //partitions/zone label in the triplet dispersion - let mut rng = rand::thread_rng(); - edge_vec.shuffle(&mut rng); - - //Discovering and flipping a cycle with positive weight in this - //graph will make the matching closer to old_match. - //We use Bellman Ford algorithm to discover positive cycles - while let Some(cycle) = positive_cycle(&edge_vec, nb_left, nb_right) { - for i in cycle { - //We flip the edges of the cycle. - (edge_vec[i].u, edge_vec[i].v) = (edge_vec[i].v, edge_vec[i].u); - edge_vec[i].w *= -1; - } - } - - //The optimal matching is build from the graph structure. - let mut matching = vec![Vec::<usize>::new(); nb_left]; - for e in edge_vec { - if e.u > e.v { - matching[e.v].push(e.u - nb_left); - } - } - matching -} - -//This function finds a positive cycle in a bipartite wieghted graph. -fn positive_cycle( - edge_vec: &[WeightedEdge], - nb_left: usize, - nb_right: usize, -) -> Option<Vec<usize>> { - let nb_side_min = min(nb_left, nb_right); - let nb_vertices = nb_left + nb_right; - let weight_lowerbound = -((nb_left + nb_right) as i32) - 1; - let mut accessed = vec![false; nb_left]; - - //We try to find a positive cycle accessible from the left - //vertex i. - for i in 0..nb_left { - if accessed[i] { - continue; - } - let mut weight = vec![weight_lowerbound; nb_vertices]; - let mut prev = vec![edge_vec.len(); nb_vertices]; - weight[i] = 0; - //We compute largest weighted paths from i. - //Since the graph is bipartite, any simple cycle has length - //at most 2*nb_side_min. In the general Bellman-Ford - //algorithm, the bound here is the number of vertices. Since - //the number of partitions can be much larger than the - //number of nodes, we optimize that. - for _ in 0..(2 * nb_side_min) { - for (j, e) in edge_vec.iter().enumerate() { - if weight[e.v] < weight[e.u] + e.w { - weight[e.v] = weight[e.u] + e.w; - prev[e.v] = j; - } - } - } - //We update the accessed table - for i in 0..nb_left { - if weight[i] > weight_lowerbound { - accessed[i] = true; - } - } - //We detect positive cycle - for e in edge_vec { - if weight[e.v] < weight[e.u] + e.w { - //it means e is on a path branching from a positive cycle - let mut was_seen = vec![false; nb_vertices]; - let mut curr = e.u; - //We track back with prev until we reach the cycle. - while !was_seen[curr] { - was_seen[curr] = true; - curr = edge_vec[prev[curr]].u; - } - //Now curr is on the cycle. We collect the edges ids. - let mut cycle = vec![prev[curr]]; - let mut cycle_vert = edge_vec[prev[curr]].u; - while cycle_vert != curr { - cycle.push(prev[cycle_vert]); - cycle_vert = edge_vec[prev[cycle_vert]].u; - } - - return Some(cycle); - } - } - } - - None -} - -// This function takes two arrays of capacity and computes the -// maximal matching in the complete bipartite graph such that the -// left vertex i is matched to left_cap_vec[i] right vertices, and -// the right vertex j is matched to right_cap_vec[j] left vertices. -// To do so, we use Dinic's maximum flow algorithm. -pub fn dinic_compute_matching(left_cap_vec: Vec<u32>, right_cap_vec: Vec<u32>) -> Vec<Vec<usize>> { - let mut graph = Vec::<Vec<EdgeFlow>>::new(); - let ed = EdgeFlow { - c: 0, - flow: 0, - v: 0, - rev: 0, - }; - - // 0 will be the source - graph.push(vec![ed; left_cap_vec.len()]); - for (i, c) in left_cap_vec.iter().enumerate() { - graph[0][i].c = *c as i32; - graph[0][i].v = i + 2; - graph[0][i].rev = 0; - } - - //1 will be the sink - graph.push(vec![ed; right_cap_vec.len()]); - for (i, c) in right_cap_vec.iter().enumerate() { - graph[1][i].c = *c as i32; - graph[1][i].v = i + 2 + left_cap_vec.len(); - graph[1][i].rev = 0; - } - - //we add left vertices - for i in 0..left_cap_vec.len() { - graph.push(vec![ed; 1 + right_cap_vec.len()]); - graph[i + 2][0].c = 0; //directed - graph[i + 2][0].v = 0; - graph[i + 2][0].rev = i; - - for j in 0..right_cap_vec.len() { - graph[i + 2][j + 1].c = 1; - graph[i + 2][j + 1].v = 2 + left_cap_vec.len() + j; - graph[i + 2][j + 1].rev = i + 1; - } - } - - //we add right vertices - for i in 0..right_cap_vec.len() { - let lft_ln = left_cap_vec.len(); - graph.push(vec![ed; 1 + lft_ln]); - graph[i + lft_ln + 2][0].c = graph[1][i].c; - graph[i + lft_ln + 2][0].v = 1; - graph[i + lft_ln + 2][0].rev = i; - - for j in 0..left_cap_vec.len() { - graph[i + 2 + lft_ln][j + 1].c = 0; //directed - graph[i + 2 + lft_ln][j + 1].v = j + 2; - graph[i + 2 + lft_ln][j + 1].rev = i + 1; - } - } - - //To ensure the dispersion of the triplets generated by the - //assignation, we shuffle the neighbours of the nodes. Hence, - //left vertices do not consider the right ones in the same order. - let mut rng = rand::thread_rng(); - for i in 0..graph.len() { - graph[i].shuffle(&mut rng); - //We need to update the ids of the reverse edges. - for j in 0..graph[i].len() { - let target_v = graph[i][j].v; - let target_rev = graph[i][j].rev; - graph[target_v][target_rev].rev = j; - } - } - - let nb_vertices = graph.len(); - - //We run Dinic's max flow algorithm - loop { - //We build the level array from Dinic's algorithm. - let mut level = vec![-1; nb_vertices]; - - let mut fifo = VecDeque::new(); - fifo.push_back((0, 0)); - while !fifo.is_empty() { - if let Some((id, lvl)) = fifo.pop_front() { - if level[id] == -1 { - level[id] = lvl; - for e in graph[id].iter() { - if e.c - e.flow > 0 { - fifo.push_back((e.v, lvl + 1)); - } - } - } - } - } - if level[1] == -1 { - //There is no residual flow - break; - } - - //Now we run DFS respecting the level array - let mut next_nbd = vec![0; nb_vertices]; - let mut lifo = VecDeque::new(); - - let flow_upper_bound = if let Some(x) = left_cap_vec.iter().max() { - *x as i32 - } else { - panic!(); - }; - - lifo.push_back((0, flow_upper_bound)); - - while let Some((id_tmp, f_tmp)) = lifo.back() { - let id = *id_tmp; - let f = *f_tmp; - if id == 1 { - //The DFS reached the sink, we can add a - //residual flow. - lifo.pop_back(); - while !lifo.is_empty() { - if let Some((id, _)) = lifo.pop_back() { - let nbd = next_nbd[id]; - graph[id][nbd].flow += f; - let id_v = graph[id][nbd].v; - let nbd_v = graph[id][nbd].rev; - graph[id_v][nbd_v].flow -= f; - } - } - lifo.push_back((0, flow_upper_bound)); - continue; - } - //else we did not reach the sink - let nbd = next_nbd[id]; - if nbd >= graph[id].len() { - //There is nothing to explore from id anymore - lifo.pop_back(); - if let Some((parent, _)) = lifo.back() { - next_nbd[*parent] += 1; - } - continue; - } - //else we can try to send flow from id to its nbd - let new_flow = min(f, graph[id][nbd].c - graph[id][nbd].flow); - if level[graph[id][nbd].v] <= level[id] || new_flow == 0 { - //We cannot send flow to nbd. - next_nbd[id] += 1; - continue; - } - //otherwise, we send flow to nbd. - lifo.push_back((graph[id][nbd].v, new_flow)); - } - } - - //We return the association - let assoc_table = (0..left_cap_vec.len()) - .map(|id| { - graph[id + 2] - .iter() - .filter(|e| e.flow > 0) - .map(|e| e.v - 2 - left_cap_vec.len()) - .collect() - }) - .collect(); - - //consistency check - - //it is a flow - for i in 3..graph.len() { - assert!(graph[i].iter().map(|e| e.flow).sum::<i32>() == 0); - for e in graph[i].iter() { - assert!(e.flow + graph[e.v][e.rev].flow == 0); - } - } - - //it solves the matching problem - for i in 0..left_cap_vec.len() { - assert!(left_cap_vec[i] as i32 == graph[i + 2].iter().map(|e| max(0, e.flow)).sum::<i32>()); - } - for i in 0..right_cap_vec.len() { - assert!( - right_cap_vec[i] as i32 - == graph[i + 2 + left_cap_vec.len()] - .iter() - .map(|e| max(0, e.flow)) - .sum::<i32>() - ); - } - - assoc_table -} - -#[cfg(test)] -mod tests { - use super::*; - - #[test] - fn test_flow() { - let left_vec = vec![3; 8]; - let right_vec = vec![0, 4, 8, 4, 8]; - //There are asserts in the function that computes the flow - let _ = dinic_compute_matching(left_vec, right_vec); - } - - //maybe add tests relative to the matching optilization ? -} diff --git a/src/util/lib.rs b/src/util/lib.rs index 891549c3..e83fc2e6 100644 --- a/src/util/lib.rs +++ b/src/util/lib.rs @@ -4,7 +4,6 @@ extern crate tracing; pub mod background; -pub mod bipartite; pub mod config; pub mod crdt; pub mod data; |